Advertisement

Scheduling DAG Applications for Time Sharing Systems

  • Shenyuan Ren
  • Ligang He
  • Junyu Li
  • Chao Chen
  • Zhuoer Gu
  • Zhiyan Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11335)

Abstract

When computing the makespan of a DAG, it is typically assumed that the tasks scheduled on the same computing node run in sequence. In reality, however, the tasks may be run in the time sharing manner. Our studies show that the discrepancy between the assumption of sequential execution and the reality of time sharing execution may lead to inaccurate calculation of the DAG makespan. In this paper, we first investigate the impact of the time sharing execution on the DAG makespan, and propose the method to model and determine the makespan with the time-sharing execution. Based on this model, we further develop the scheduling strategies for DAG jobs running in time-sharing. Extensive experiments have been conducted to verify the effectiveness of the proposed methods. The experimental results show that by taking time sharing into account, our DAG scheduling strategy can reduce the makespan significantly, comparing with its counterpart in sequential execution.

Notes

Acknowledgement

This work is supported by China Scholarship Council.

References

  1. 1.
    Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., Wilkes, J.: CPI2: CPU performance isolation for shared compute clusters, New York, NY, USA, pp. 379–391 (2013)Google Scholar
  2. 2.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman, New York (2002)Google Scholar
  3. 3.
    Liao, Q., Jiang, S., Hei, Q., Li, T., Yang, Y.: Scheduling stochastic tasks with precedence constrain on cluster systems with heterogenous communication architecture. In: Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9532, pp. 85–99. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27161-3_8CrossRefGoogle Scholar
  4. 4.
    Wang, L., et al.: Energy-aware parallel task scheduling in a cluster. Future Gener. Comput. Syst. 29(7), 1661–1670 (2013).  https://doi.org/10.1016/j.future.2013.02.010. ISSN: 0167-739XCrossRefGoogle Scholar
  5. 5.
    Li, X., Zhao, Y., Li, Y., Ju, L., Jia, Z.: An improved energy-efficient scheduling for precedence constrained tasks in multiprocessor clusters. In: Sun, X., et al. (eds.) ICA3PP 2014. LNCS, vol. 8630, pp. 323–337. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11197-1_25CrossRefGoogle Scholar
  6. 6.
    Liu, L., Zhang, M., Buyya, R., Fan, Q.: Deadline-constrained coevolutionary genetic algorithm for scientific workflow scheduling in cloud computing. Concurrency Comput. Pract. Exp. 29(5), e3942 (2017).  https://doi.org/10.1002/cpe.3942CrossRefGoogle Scholar
  7. 7.
    Maheshwari, K., Jung, E.S., Meng, J., Morozov, V., Vishwanath, V., Kettimuthu, R.: Workflow performance improvement using model-based scheduling over multiple clusters and clouds. Future Gener. Comput. Syst. 54, 206–218 (2016).  https://doi.org/10.1016/j.future.2015.03.017. ISSN: 0167–739XCrossRefGoogle Scholar
  8. 8.
    Chen, W., Xie, G., Li, R., Bai, Y., Fan, C., Li, K.: Efficient task scheduling for budget constrained parallel applications on heterogeneous cloud computing systems. Future Gener. Comput. Syst. 74, 1–11 (2017).  https://doi.org/10.1016/j.future.2017.03.008. ISSN: 0167–739XCrossRefGoogle Scholar
  9. 9.
    Hu, Y., Liu, C., Li, K., Chen, X., Li, K.: Slack allocation algorithm for energy minimization in cluster systems. Future Gener. Comput. Syst. 74, 119–131 (2017).  https://doi.org/10.1016/j.future.2016.08.022. ISSN: 0167–739XCrossRefGoogle Scholar
  10. 10.
    Canon, L.C., Philippe, L.: On the heterogeneity bias of cost matrices for assessing scheduling algorithms. IEEE Trans. Parallel Distrib. Syst. 28(6), 1675–1688 (2017).  https://doi.org/10.1109/TPDS.2016.2629503CrossRefGoogle Scholar
  11. 11.
    Wu, H., Hua, X., Li, Z., Ren, S.: Resource and instance hour minimization for deadline constrained DAG applications using computer clouds. IEEE Trans. Parallel Distrib. Syst. 27(3), 885–899 (2016).  https://doi.org/10.1109/TPDS.2015.2411257CrossRefGoogle Scholar
  12. 12.
    Xie, G., Xiao, X., Li, R., Li, K.: Schedule length minimization of parallel applications with energy consumption constraints using heuristics on heterogeneous distributed systems. Concurrency Comput. Pract. Exp. 29, e4024 (2016).  https://doi.org/10.1002/cpe.4024CrossRefGoogle Scholar
  13. 13.
    Oxley, M.A., et al.: Makespan and energy robust stochastic static resource allocation of a bag-of-tasks to a heterogeneous computing system. IEEE Trans. Parallel Distrib. Syst. 26(10), 2791–2805 (2015).  https://doi.org/10.1109/TPDS.2014.2362921CrossRefGoogle Scholar
  14. 14.
    Li, D., Chen, C., Guan, J., Zhang, Y., Zhu, J., Yu, R.: DCloud: deadline-aware resource allocation for cloud computing jobs. IEEE Trans. Parallel Distrib. Syst. 27(8), 2248–2260 (2016).  https://doi.org/10.1109/TPDS.2015.2489646CrossRefGoogle Scholar
  15. 15.
  16. 16.
  17. 17.
  18. 18.
  19. 19.
    Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., Vahi, K.: Characterizing and profiling scientific workflows. Future Gener. Comput. Syst. 29(3), 682–692 (2013).  https://doi.org/10.1016/j.future.2012.08.015. ISSN: 0167–739XCrossRefGoogle Scholar
  20. 20.
    Bharathi, S., Chervenak, A., Deelman, E., et al.: Characterization of scientific workflows. In: Third Workshop on Workflows in Support of Large-Scale Science, WORKS 2008, pp. 1–10. IEEE (2008)Google Scholar
  21. 21.
    Rasley, J., Karanasos, K., Kandula, S., Fonseca, R., Vojnovic, M., Rao, S.: Efficient queue management for cluster scheduling. In: Proceedings of the Eleventh European Conference on Computer Systems (EuroSys 2016), New York, NY, USA, Article 36, 15 p. ACM (2016)Google Scholar
  22. 22.
    Boutin, E., et al.: Apollo: scalable and coordinated scheduling for cloud-scale computing. In: OSDI (2014)Google Scholar
  23. 23.
    Karanasos, K., et al.: Mercury: hybrid centralized and distributed scheduling in large shared clusters. In: USENIX. ATC (2015)Google Scholar
  24. 24.
    Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low latency scheduling. In: SOSP (2013)Google Scholar
  25. 25.
    Vavilapalli, V.K., et al.: Apache hadoop YARN: yet another resource negotiator. In: SoCC (2013)Google Scholar
  26. 26.
    Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J.: Large-scale cluster management at Google with Borg. In: EuroSys (2015)Google Scholar
  27. 27.
    Chen, C., He, L., Chen, H., Sun, J., Gao, B., Jarvis, S.A.: Developing communication-aware service placement frameworks in the cloud economy. In: 2013 IEEE International Conference on Cluster Computing (CLUSTER), Indianapolis, IN, pp. 1–8 (2013).  https://doi.org/10.1109/CLUSTER.2013.6702668

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Shenyuan Ren
    • 1
  • Ligang He
    • 1
  • Junyu Li
    • 1
  • Chao Chen
    • 1
  • Zhuoer Gu
    • 1
  • Zhiyan Chen
    • 1
  1. 1.Department of Computer ScienceUniversity of WarwickCoventryUK

Personalised recommendations