Advertisement

Improve Heteroscedastic Discriminant Analysis by Using CBP Algorithm

  • Jafar A. Alzubi
  • Ali Yaghoubi
  • Mehdi Gheisari
  • Yongrui Qin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11335)

Abstract

Linear discriminant analysis is considered as current techniques in feature extraction so, LDA, by discriminant information which obtains in mapping space, does the classification act. When the classes’ distribution is not normal, LDA, to perform classification, will face problem and will resulted the poor performance of criteria in performing the classification act. One of the proposed ways is the use of other measures, such as Chernoff’s distance so, by using Chernoff’s measure LDA has been spreading to its heterogeneous states and LDA in this state, in addition to use information among the medians, uses the information of the classes’ Covariance matrices. By defining scattering matrix, based on Boundary and non-Boundary samples and using these matrices in Chernoff’s criteria, the decrease of the classes’ overlapping in the mapping space in as result, the rate of classification correctness increases. Using Boundary and non-Boundary samples in scattering matrices causes improvement over the result. In this article, we use a new discovering multi-stage Algorithm to choose Boundary and non-Boundary samples so, the results of the conducted experiments shows promising performance of the proposing method.

Keywords

Linear discriminant analysis CBP algorithm Chernoff criterion Boundary pattern 

References

  1. 1.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, San Diego (2013)Google Scholar
  2. 2.
    Duin, R.P.W., Loog, M.: Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 732–739 (2004)CrossRefGoogle Scholar
  3. 3.
    Sugiyama, M.: Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J. Mach. Learn. Res. 8, 1027–1061 (2007)zbMATHGoogle Scholar
  4. 4.
    ReinholdHaeb-Umbach, M.: Multi-class linear dimension reduction by generalized Fisher criteria. In: The Proceedings of the 6(th) International Conference on Spoken Language Processing, vol. II (2000)Google Scholar
  5. 5.
    Na, J.H., Park, M.S., Choi, J.Y.: Linear boundary discriminant analysis. Pattern Recognit. 43(3), 929–936 (2010)CrossRefGoogle Scholar
  6. 6.
    Kim, H., Drake, B.L., Park, H.: Multiclass classifiers based on dimension reduction with generalized LDA. Pattern Recognit. 40(11), 2939–2945 (2007)CrossRefGoogle Scholar
  7. 7.
    Salvi, G.: Accent clustering in Swedish using the Bhattacharyya distance. In: 15th International Congress of Phonetic Science, pp. 1149–1152, August 2003Google Scholar
  8. 8.
    Rueda, L., Oommen, B.J., Henríquez, C.: Multi-class pairwise linear dimensionality reduction using heteroscedastic schemes. Pattern Recognit. 43(7), 2456–2465 (2010)CrossRefGoogle Scholar
  9. 9.
    McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition, vol. 544. Wiley, New York (2004)zbMATHGoogle Scholar
  10. 10.
    Masip, D., Kuncheva, L.I., Vitrià, J.: An ensemble-based method for linear feature extraction for two-class problems. Pattern Anal. Appl. 8(3), 227–237 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach, vol. 761. Prentice-Hall, London (1982)zbMATHGoogle Scholar
  12. 12.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)CrossRefGoogle Scholar
  13. 13.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, vol. 14, no. 2, pp. 1137–1145, August 1995Google Scholar
  14. 14.
    Friedman, J.H.: Regularized discriminant analysis. J. Am. Stat. Assoc. 84(405), 165–175 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998). http://archive.ics.uci.edu/ml
  16. 16.
    Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural Comput. 12(9), 2013–2036 (2000)CrossRefGoogle Scholar
  17. 17.
    Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple parameters for support vector machines. Mach. Learn. 46(1–3), 131–159 (2002)CrossRefGoogle Scholar
  18. 18.
    Yaghoubi, A., Ghaffari, H.R.: Improved LDA by using distributing distances and boundary patternsGoogle Scholar
  19. 19.
    Wang, Z., Ruan, Q., Liu, S., Guo, S.: Regularized neighborhood boundary discriminant analysis for facial expression recognition (2011)Google Scholar
  20. 20.
    Marchiori, E.: Hit miss networks with applications to instance selection. J. Mach. Learn. Res. 9, 997–1017 (2008)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Marchiori, E.: Graph-based discrete differential geometry for critical instance filtering. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 63–78. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04174-7_5CrossRefGoogle Scholar
  22. 22.
    Marchiori, E.: Class conditional nearest neighbor for large margin instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 32, 364–370 (2010)CrossRefGoogle Scholar
  23. 23.
    Nikolaidis, K., Goulermas, J.Y., Wu, Q.H.: A class boundary preserving algorithm for data condensation. Pattern Recognit. 44(3), 704–715 (2011)CrossRefGoogle Scholar
  24. 24.
    Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning algorithms. Data Min. Knowl. Discov. 6, 153–172 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Smyth, B., Keane, M.T.: Remembering to forget. In: Proceeding of the 14th International Conference on Artificial Intelligence, pp. 377–382 (1995)Google Scholar
  26. 26.
    Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Mach. Learn. 38, 257–286 (2000)CrossRefGoogle Scholar
  27. 27.
    Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17, 790–799 (1995)CrossRefGoogle Scholar
  28. 28.
    Dasarathy, B.V.: Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design. IEEE Trans. Syst. Man Cybernet. 24(3), 511–517 (1994)CrossRefGoogle Scholar
  29. 29.
    Arif, M., Wang, G., Balas, V.E.: Secure VANETs: trusted communication scheme between vehicles and infrastructure based on fog computing. Stud. Inform. Control. 27(2), 235–246 (2018)Google Scholar
  30. 30.
    Zhu, X.: Super-class discriminant analysis: a novel solution for heteroscedasticity. Pattern Recognit. Lett. 34(5), 545–551 (2013)CrossRefGoogle Scholar
  31. 31.
    Gheisari, M., Esnaashari, M.: Data storages in wireless sensor networks to deal with disaster management. In: Emergency and Disaster Management: Concepts, Methodologies, Tools, and Applications, pp. 655–682. IGI Global (2019)Google Scholar
  32. 32.
    Gheisari, M., Baloochi, H., Gharghi, M., Khajehyousefi, M.: An evaluation of two proposed systems of sensor datas storage in total data parameter. Int. Geoinformatics Res. Dev. J., March 2012Google Scholar
  33. 33.
    Porkar, P., Gheisari, M., Bazyari, G.H., Kaviyanjahromi, Z.: A comparison with two sensor data storages in energy. In: ICCCI. ASME Press (2011)Google Scholar
  34. 34.
    Rezaeiye, P.P., Gheisari, M.: Performance analysis of two sensor data storages. In: Proceedings of 2nd International Conference on Circuits, Systems, Communications & Computers (CSCC), pp. 133–136 (2011)Google Scholar
  35. 35.
    Rezaeiye, P.P., Rezaeiye, P.P., Karbalayi, E., Gheisari, M.: Statistical method used for doing better corneal junction operation. In: Material and Manufacturing Technology III. Advanced Materials Research, vol. 548, pp. 762–766. Trans Tech Publications (9 2012)Google Scholar
  36. 36.
    Rezaeiye, P.P., et al.: Agent programming with object oriented (C++). In: ICECCT, pp. 1–10. IEEE (2017)Google Scholar
  37. 37.
    Gheisari, M.: Design, implementation and evaluation of SemHD: a new semantic hierarchical sensor data storage. Indian J. Innov. Dev. 1, 115–120 (2012). ISSN 2277 – 5390Google Scholar
  38. 38.
    Gheisari, M., Esnaashari, M.: A survey to face recognition algorithms: advantageous and disadvantageous. J. Mod. Technol. Eng. 2(1), 57–65 (2017)Google Scholar
  39. 39.
    Gheisari, M., et al.: NSSSD: a new semantic hierarchical storage for sensor data. In: 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Nanchang, pp. 174–179 (2016)Google Scholar
  40. 40.
    Gheisari, M., Wang, G., Bhuiyan, M.Z.A.: A survey on deep learning in big data. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, pp. 173–180 (2017)Google Scholar
  41. 41.
    Jafari, M., Wang, J., Qin, Y., Gheisari, M., Shahabi, A.S., Tao, X.: Automatic text summarization using fuzzy inference. In: 2016 22nd International Conference on Automation and Computing (ICAC), Colchester, pp. 256–260 (2016)Google Scholar
  42. 42.
    Gheisari, M.: The effectiveness of schema therapy integrated with neurological rehabilitation methods to improve executive functions in patients with chronic depression. Health Sci. J. 10(4) (2016)Google Scholar
  43. 43.
    Gheisari, M., et al.: MAPP: a modular arithmetic algorithm for privacy preserving in IoT. In: 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and IEEE (2017)Google Scholar
  44. 44.
    Ashourian, M., Gheisari, M., Hashemi, A.: An improved node scheduling scheme for resilient packet ring network. Majlesi J. Electr. Eng. 9(2), 43 (2015)Google Scholar
  45. 45.
    Gheisari, M., Wang, G., Chen, S.: IoT-SDNPP: a method for privacy-preserving in IoT-based smart city with software defined networking. In: 18th International Conference on Algorithms and Architectures for Parallel Processing Guangzhou, China, 15–17 November 2018 (2018)Google Scholar
  46. 46.
    Yang, W., Wang, G., Chood, K.K.R., Chen, S.: HEPart: a balanced hypergraph partitioning algorithm for big data applications. Futur. Gener. Comput. Syst. 83, 250–268 (2018)CrossRefGoogle Scholar
  47. 47.
    Dai, Y., Wang, G.: Analyzing tongue images using a conceptual alignment deep autoencoder. IEEE Access 6, 5962–5972 (2018)CrossRefGoogle Scholar
  48. 48.
    Peng, S., et al.: An immunization framework for social networks through big data based influence modeling. IEEE Trans. Dependable Secur. Comput. PP(99), 1 (2017)CrossRefGoogle Scholar
  49. 49.
    Javadpour, A., Memarzadeh-Tehran, H., Saghafi, F.: A temperature monitoring system incorporating an array of precision wireless thermometers. In: 2015 International Conference on Smart Sensors and Application (ICSSA) (2015)Google Scholar
  50. 50.
    Javadpour, A., Memarzadeh-Tehran, H.: A wearable medical sensor for provisional healthcare. In: 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS) (2015)Google Scholar
  51. 51.
    Javadpour, A., Abharian, S.K., Wang, G.: Feature selection and intrusion detection in cloud environment based on machine learning algorithms. In: 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC) (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jafar A. Alzubi
    • 1
  • Ali Yaghoubi
    • 4
  • Mehdi Gheisari
    • 2
  • Yongrui Qin
    • 3
  1. 1.Al-Balqa Applied UniversitySaltJordan
  2. 2.School of Computer Science and TechnologyGuangzhou UniversityGuangzhouChina
  3. 3.Department of Computer ScienceUniversity if HudderfiedHuddersfieldUK
  4. 4.Department of Computer ScienceIslamic Azad UniversityBorāzjānIran

Personalised recommendations