Advertisement

Parallel Statistical and Machine Learning Methods for Estimation of Physical Load

  • Sergii Stirenko
  • Peng Gang
  • Wei Zeng
  • Yuri Gordienko
  • Oleg Alienin
  • Oleksandr Rokovyi
  • Nikita Gordienko
  • Ivan Pavliuchenko
  • Anis Rojbi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11334)

Abstract

Several statistical and machine learning methods are proposed to estimate the type and intensity of physical load and accumulated fatigue. They are based on the statistical analysis of accumulated and moving window data subsets with construction of a kurtosis-skewness diagram. This approach was applied to the data gathered by the wearable heart monitor for various types and levels of physical activities, and for people with various physical conditions. The different levels of physical activities, loads, and fitness can be distinguished from the kurtosis-skewness diagram, and their evolution can be monitored. Several metrics for estimation of the instant effect and accumulated effect (physical fatigue) of physical loads were proposed. The data and results presented allow to extend application of these methods for modeling and characterization of complex human activity patterns, for example, to estimate the actual and accumulated physical load and fatigue, model the potential dangerous development, and give cautions and advice in real time.

Keywords

Statistical analysis Physiological signals Heart beat Classification Machine learning HCI and human behaviour 

Notes

Acknowledgment

The work was partially supported by Ukraine-France Collaboration Project (Programme PHC DNIPRO) (http://www.campusfrance.org/fr/dnipro) and by Huizhou Science and Technology Bureau and Huizhou University (Huizhou, P.R.China) in the framework of Platform Construction for China-Ukraine Hi-Tech Park Project # 2014C050012001.

References

  1. 1.
    Kumari, P., Mathew, L., Syal, P.: Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 90, 298–307 (2017)CrossRefGoogle Scholar
  2. 2.
    Koydemir, H.C., Ozcan, A.: Wearable and implantable sensors for biomedical applications. Ann. Rev. Anal. Chem. 11 (2018)  https://doi.org/10.1146/annurev-anchem-061417-125956CrossRefGoogle Scholar
  3. 3.
    Faust, O., Hagiwara, Y., Hong, T.J., Lih, O.S., Acharya, U.R.: Deep learning for healthcare applications based on physiological signals: a review. Comput. Methods Programs Biomed. 161, 1–13 (2018)CrossRefGoogle Scholar
  4. 4.
    Mohanavelu, K., Lamshe, R., Poonguzhali, S., Adalarasu, K., Jagannath, M.: Assessment of human fatigue during physical performance using physiological signals: a review. Biomed. Pharmacol. J. 10(4), 1887–1896 (2017)CrossRefGoogle Scholar
  5. 5.
    Edward, C.W., Nemeroff, C.B. (eds.): The Concise Corsini Encyclopedia of Psychology and Behavioral Science. Wiley, Hoboken (2004)Google Scholar
  6. 6.
    Gordienko, Y., et al.: Augmented coaching ecosystem for non-obtrusive adaptive personalized elderly care on the basis of Cloud-Fog-Dew computing paradigm. In: 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 359–364. IEEE, Opatija (2017)Google Scholar
  7. 7.
    Banaee, H., Ahmed, M.U., Loutfi, A.: Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors 13(12), 17472–17500 (2013)CrossRefGoogle Scholar
  8. 8.
    Bunn, J.A., Navalta, J.W., Fountaine, C.J., Reece, J.D.: Current state of commercial wearable technology in physical activity monitoring 2015–2017. Int. J. Exerc. Sci. 11(7), 503 (2018)Google Scholar
  9. 9.
    Amft, O., Van Laerhoven, K.: What will we wear after smartphones? IEEE Pervasive Comput. 16(4), 80–85 (2017)CrossRefGoogle Scholar
  10. 10.
    Gang, P., et al.: User-driven intelligent interface on the basis of multimodal augmented reality and brain-computer interaction for people with functional disabilities. Future of Information and Communications Conference (FICC), Singapore. arXiv preprint arXiv:1704.05915 (2017)
  11. 11.
    Du, L.H., Liu, W., Zheng, W.L., Lu, B.L.: Detecting driving fatigue with multimodal deep learning. In: 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 74–77. IEEE (2017)Google Scholar
  12. 12.
    Lopez, M.B., del-Blanco, C.R., Garcia, N.: Detecting exercise-induced fatigue using thermal imaging and deep learning. In: 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2017)Google Scholar
  13. 13.
    Gordienko, Y., et al.: Deep learning for fatigue estimation on the basis of multimodal human-machine interactions. XXIX IUPAP Conference in Computational Physics (CCP2017), Paris, France. arXiv preprint arXiv:1801.06048 (2017)
  14. 14.
    Hajinoroozi, M., Zhang, J. M., Huang, Y.: Driver’s fatigue prediction by deep covariance learning from EEG. In: 2017 International Conference on Systems, Man, and Cybernetics (SMC), pp. 240–245. IEEE (2017)Google Scholar
  15. 15.
    Togo, F., Takahashi, M.: Heart rate variability in occupational health-a systematic review. Ind. Health 47(6), 589–602 (2009)CrossRefGoogle Scholar
  16. 16.
    Aubert, A.E., Seps, B., Beckers, F.: Heart rate variability in athletes. Sports Med. 33(12), 889–919 (2003)CrossRefGoogle Scholar
  17. 17.
    Schmitt, L., et al.: Fatigue shifts and scatters heart rate variability in elite endurance athletes. PLoS ONE 8(8), e71588 (2013)CrossRefGoogle Scholar
  18. 18.
    Pichot, V., et al.: Relation between heart rate variability and training load in middle-distance runners. Med. Sci. Sports Exerc. 32(10), 1729–1736 (2000)CrossRefGoogle Scholar
  19. 19.
    Gonzalez, K., Sasangohar, F., Mehta, R.K., Lawley, M., Erraguntla, M.: Measuring fatigue through heart rate variability and activity recognition: a scoping literature review of machine learning techniques. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 61, no. 1, pp. 1748–1752. SAGE Publications, Los Angeles (2017)CrossRefGoogle Scholar
  20. 20.
    Morgan, S.J., Mora, J.A.M.: Effect of heart rate variability biofeedback on sport performance, a systematic review. Appl. Psychophysiol. Biofeedback 42(3), 235–245 (2017)CrossRefGoogle Scholar
  21. 21.
    Yang, C.C., Hsu, Y.L.: A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10(8), 7772–7788 (2010)CrossRefGoogle Scholar
  22. 22.
    Evenson, K.R., Goto, M.M., Furberg, R.D.: Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 12(1), 159 (2015)CrossRefGoogle Scholar
  23. 23.
    Lin, C.T., et al.: Review of wireless and wearable electroencephalogram systems and brain-computer interfaces–a mini-review. Gerontology 56(1), 112–119 (2010)CrossRefGoogle Scholar
  24. 24.
    Cramer, H.: Mathematical Methods of Statistics, vol. 9. Princeton University Press, Princeton (1999)zbMATHGoogle Scholar
  25. 25.
    Delignette-Muller, M.L., Pouillot, R., Denis, J.-B., Dutang, C.: fitdistrplus package for R (2012)Google Scholar
  26. 26.
    Cullen, A., Frey, H.: Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs. Springer, Heidelberg (1999)Google Scholar
  27. 27.
    Gordienko, Y.G.: Generalized model of migration-driven aggregate growth–asymptotic distributions, power laws and apparent fractality. Int. J. Mod. Phys. B 26(01), 1250010 (2012)CrossRefGoogle Scholar
  28. 28.
    Ma, X., Xu, F.: Peak factor estimation of non-Gaussian wind pressure on high-rise buildings. Struct. Des. Tall Spec. Build. 26(17), e1386 (2017)CrossRefGoogle Scholar
  29. 29.
    Gordienko, Y.G.: Molecular dynamics simulation of defect substructure evolution and mechanisms of plastic deformation in aluminium nanocrystals. Metallofiz. Noveishie Tekhnol. 33(9), 1217–1247 (2011)Google Scholar
  30. 30.
    Ketchantang, W., Derrode, S., Martin, L., Bourennane, S.: Pearson-based mixture model for color object tracking. Mach. Vis. Appl. 19(5–6), 457–466 (2008)CrossRefGoogle Scholar
  31. 31.
    Tison, C., Nicolas, J.M., Tupin, F., Maître, H.: A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2046–2057 (2004)CrossRefGoogle Scholar
  32. 32.
    Sornette, D., Zhou, W.X.: Predictability of large future changes in major financial indices. Int. J. Forecast. 22(1), 153–168 (2006)CrossRefGoogle Scholar
  33. 33.
    Anastasiadis, A.D., Magoulas, G.D., Vrahatis, M.N.: New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing 64, 253–270 (2005)CrossRefGoogle Scholar
  34. 34.
    Intrator O., Intrator N.: Using neural nets for interpretation of nonlinear models. In: Proceedings of the Statistical Computing Section, pp. 244–249. American Statistical Society (eds.), San Francisco (1993)Google Scholar
  35. 35.
    Beck, M.W.: Visualizing neural networks. https://github.com/fawda123. Accessed 03 May 2018
  36. 36.
    Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet. Circulation 101(23), e215–e220 (2000)CrossRefGoogle Scholar
  37. 37.
    Gordienko, N., Lodygensky, O., Fedak, G., Gordienko, Yu.: Synergy of volunteer measurements and volunteer computing for effective data collecting, processing, simulating and analyzing on a worldwide scale, In: Proceedings of the 38th International Convention on Inf. and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 193–198. IEEE, Opatija (2015)Google Scholar
  38. 38.
    Chen, Y., Wang, Z.Y., Yuan, G., Huang, L.: An overview of online based platforms for sharing and analyzing electrophysiology data from big data perspective. WIREs Data Min. Knowl. Discov. 7(4), e1206 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sergii Stirenko
    • 1
  • Peng Gang
    • 2
  • Wei Zeng
    • 2
  • Yuri Gordienko
    • 1
  • Oleg Alienin
    • 1
  • Oleksandr Rokovyi
    • 1
  • Nikita Gordienko
    • 1
  • Ivan Pavliuchenko
    • 1
  • Anis Rojbi
    • 3
  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine
  2. 2.Huizhou UniversityHuizhouChina
  3. 3.CHArt Laboratory (Human and Artificial Cognitions)University of Paris 8ParisFrance

Personalised recommendations