Advertisement

A Parallel Branch and Bound Algorithm for the Probabilistic TSP

  • Mohamed Abdellahi Amar
  • Walid Khaznaji
  • Monia Bellalouna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11334)

Abstract

The paper presents parallelization of exact algorithm of resolution for the Probabilistic Traveling Salesman Problem (PTSP). This algorithm allows us, first, to verify the stability of well-solvable special cases and also to optimally solve useful instances of PTSP. It again allows to perform our version of Karp partitioning algorithm, where real problems are very large-sized. The implementation of the algorithm of Karp consists in subdividing the square plan, into sub-plans. So we transform the resolution of a large size problem to the resolution of many small size sub-problems which can be exactly solved. This application can be gridified and these different sub-problems would be processed in parallel by different nodes since they are totally independent. In each sub-plan the Branch and Bound algorithm is used. In this paper we propose two parallelizations of the Branch and Bound algorithm for the resolution of the PTSP. On the one hand, the parallelization of the branches used in the exploration of the tree, on the other hand the parallelization of the algorithm associated with the notion of partitioning introduced by Karp. We perform an experimental study conducted in a multi-core environment to evaluate the performance of the proposed approach.

Keywords

PTSP Parallel algorithm Open MP Simulations 

References

  1. 1.
    Amar, M.A., Khaznaji, W., Bellalouna, M.: An exact resolution for the probabilistic traveling salesman problem under the a priori strategy. In: International Conference on Computational Science, Zurich, Switzerland, vol. 108C, pp. 1414–1423 (2017)Google Scholar
  2. 2.
    Bellalouna, M.: Problèmes d’optimisation combinatoire probabilistes. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Paris, France (1993)Google Scholar
  3. 3.
    Bellalouna, M., Gharbi, A., Khaznaji, W.: The k-means and TSP based mobility protocol modeling as a probabilistic combinatorial optimization problem. In: The Ninth International Conference on Systems and Networks Communications, ICSNC 2014, Nice, pp. 48–53, October 2014. ISBN 978-1-61208-368-1Google Scholar
  4. 4.
    Berman, O., Simchi-Levi, D.: Finding the optimal a priori tour and location of a traveling salesman with nonhomogeneous customers. Transp. Sci. 2, 148–154 (1988)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bertsimas, D.J., Howell, L.: Further results on the probabilistic traveling salesman problem. Eur. J. Oper. Res. 65, 68–95 (1993)CrossRefGoogle Scholar
  6. 6.
    Bianchi, L.: Ant colony optimization and local search for the probabilistic traveling salesman problem: a case study in stochastic combinatorial optimization. Ph.D. thesis, Univ. Libre de Bruxelles, Brussels, Belgium (2006)Google Scholar
  7. 7.
    Boulet, P.: Outils pour la parallélisation automatique. Ph.D. thesis, ENS de Lyon (1996)Google Scholar
  8. 8.
    Bowler, N.E., Fink, T.M.A., Ball, R.C.: Characterization of the probabilistic traveling salesman problem. Phys. Rev. E 68, 036703 (2003)CrossRefGoogle Scholar
  9. 9.
    Campbell, A.M.: Aggregation for the probabilistic traveling salesman problem. Comput. Oper. Res. 33, 2703–2724 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Casanova, H., Legrand, A., Robert, Y.: Parallel Algorithms. Chapman & Hall/CRC Press (2008)Google Scholar
  11. 11.
    Gengler, M., Ubéda, S., Desprez, F.: Initiation au Parallélisme. Masson, Paris (1996)Google Scholar
  12. 12.
    Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Computing. Addison Wesley, Boston (2003)zbMATHGoogle Scholar
  13. 13.
    Jaillet, P.: The probabilistic traveling salesman problems. Technical report 185, operations research, Ph.D. thesis, MIT, Cambridge (1985)Google Scholar
  14. 14.
    Karp, R.M.: The probabilistic analysis of partitioning algorithms for the traveling salesman problem in the plane. Math. Oper. Res. 2, 209–224 (1977)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Laporte, G., Louveaux, F., Mercure, H.: An exact solution for the a priori optimization of the probabilistic traveling salesman problem. Oper. Res. 42, 543–549 (1994)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Little, J.D.C., Murat, K.G., Sweeney, D., Karel, M.: An algorithm for traveling salesman problem. Oper. Res. 11, 972–989 (1963)CrossRefGoogle Scholar
  17. 17.
    Liu, Y.H.: Diversified local search strategy under scatter search framework for the probabilistic traveling salesman problem. Eur. J. Oper. Res. 191, 332–346 (2008)CrossRefGoogle Scholar
  18. 18.
    Liu, Y.H.: Different initial solution generators in genetic algorithms for solving the probabilistic traveling salesman problem. Appl. Math. Comput. 216, 125–137 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Liu, Y.H., Jou, R.C., Wang, C.-J.: Genetic algorithms for the probabilistic traveling salesman problem. In: Proceedings of the Conference on E-logistics, pp. 77–82. Taoyuan, Taiwan (2004)Google Scholar
  20. 20.
    Mabrouk, B.B., Hasni, H., Mahjoub, Z.: On a parallel algorithm for the determination of multiple optimal solutions for the LCSS problem. In: Carretero, J., Garcia-Blas, J., Ko, R.K.L., Mueller, P., Nakano, K. (eds.) ICA3PP 2016. LNCS, vol. 10048, pp. 440–448. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49583-5_33CrossRefGoogle Scholar
  21. 21.
    Megson, G.M., Chen, X.: Automatic Parallelization for a Class of Regular Computations. World Scientific Publishing Co., River Edge (1997)Google Scholar
  22. 22.
    Quin, M.J.: Parallel programming in C with MPI and OpenMP. International edn. McGraw-Hill Higher Education, Pennsylvania (2003)Google Scholar
  23. 23.
    Rossi, F.A., Gavioli, I.: Aspects of heuristic methods in the probabilistic traveling salesman problem. In: Advanced School on Statistics in Combinatorial Optimization, pp. 214–227 (1987)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.CRISTAL Laboratory POLE GRIFTUniversity of Manouba, National School of Computer SciencesManouba, TunisTunisia
  2. 2.Tunisia SESAME UniversityArianaTunisia

Personalised recommendations