Possible Cultural Diversity and Digital Competences: Retrospection from Mathematical Textbooks for Lower Secondary Level

  • Ján GunčagaEmail author
  • Matthias Brandl
  • Péter Körtesi
Part of the Critical Studies of Education book series (CSOE, volume 10)


The paper deals with educational traditions in mathematics education in Austrian-Ugrian monarchy in the nineteenth century. This country as a multinational and multicultural territory is an inspirable example of cultural diversity. There is lack of university courses in the teacher training study, which shows cultural diversity as a heritage of Central European educational tradition. Many parts of school mathematics can be presented in modern form through ICT tools and educational software. We can use historical mathematics textbooks by different authors because a lot of original historical mathematical works and textbooks are possible to find in electronic form in the Internet or in electronical libraries and archives. The process of digitalization in these institutions has a big progress. For this reason we show some examples from historical mathematical textbooks. These historical approaches have connection to nowadays mathematics, because many international studies such PISA support problem-solving of real-life-oriented problems. GeoGebra and other educational software can help teachers to use the time more effectively, motivate the students and teach mathematics with understanding. We present the method of generating problems and some other motivational tools.


Historical mathematical textbook Cultural diversity in school tradition Mathematical and digital competencies Method of generating problems Problem-solving 



The research was supported by the scholarship of the Catholic Academic Exchange Service (KAAD) and project APVV-15-0378 “Optimisation of the mathematic educational materials on the base of needs analysis by younger school age pupils”.


  1. Bayerl, E., & Žilková, K. (2016). Interactive textbooks in mathematics education – What does it mean for students? In L. Balko et al. (Eds.), Aplimat 2016 – 15th conference on applied mathematics (pp. 56–65). Bratislava: Slovak University of Technology in Bratislava.Google Scholar
  2. Bolyai, F. (2017). Farkas Bolyai in the MacTutor history of mathematics database. Retrieved from
  3. Bolyai de Bolya, W. (2017). Wolfgangi Bolyai de Bolya: Tentamen. Retrieved from
  4. Brandl, M. (2016). Narrative Mathematik-Didaktik mittels Elementen bildender Kunst. In S. Kaufmann et al. (Eds.), Beiträge zum Mathematikunterricht (pp. 1415–1418). Münster: WTM-Verlag.Google Scholar
  5. Brandl, M. (2010). Narrative didactics in mathematical education: An innovative didactical concept. In T. Bianco & V. Ulm (Eds.), Mathematics education with technology – Experiences in Europe (pp. 103–110). Augsburg: University of Augsburg.Google Scholar
  6. Bruner, J. (1986). Actual minds, possible worlds. Cambridge, MA: Harvard University Press.Google Scholar
  7. Budai, L. (2016). Téri képességek mérése és fejlesztése GeoGebrával a középiskolákban. PhD dissertation. Debrecen: University of Debrecen.Google Scholar
  8. Budai, L. (2013). Development of spatial perception in high school with GoeGebra. Teaching Mathematics and Compuer Science, 11(2), 211–230.CrossRefGoogle Scholar
  9. Budai, L. (2015). Interactive dynamical tests for evaluating the development of spatial abilities in high school. Creative Mathematics and Informatics, 24(2), 12–136.Google Scholar
  10. Descartes, R. (1954). La Geometrie (The Geometry of René Descartes) Translated from French and Latin by David Eugene Smith and Marcia L. Latham. Retrieved from
  11. Gunčaga, J. (2014). Teachers Institute in Spisska Kapitula. The first teachers Institute in the Area of Slovakia. History of Education & Children’s Literature, 9(1), 409–429.Google Scholar
  12. Hejný, M., & Littler, G. (2006). Transmissive and constructivist approaches to teaching. In Hejný et al. (Eds.), Creative teaching in mathematics (pp. 11–34). Prague: Charles University.Google Scholar
  13. Hohenwarter, M., & Lavicza, Z. (2010). Gaining momentum: GeoGebra inspires educators and students around the world. GeoGebra The New Language for the Third Millennium, 1(1), 1–6.Google Scholar
  14. Jeraj, S. (1995). Franc Močnik Osnovni življenski podatki. Retrieved from
  15. Kaput, J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 515–556). New York: Macmillan.Google Scholar
  16. Kántor, T. (2013). Historical aspects in teaching mathematics. In A. Ambrus & É. Vásárhelyi (Eds.), Problem solving in mathematics education (pp. 80–94). Eger-Budapest: Eötvös Loránd University-Eszterházy Károly College.Google Scholar
  17. Klassen, S. (2006). A theoretical framework for contextual science teaching. Interchange, 37(1–2), 31–61.CrossRefGoogle Scholar
  18. Koreňová, L. (2016). Digital technologies in teaching mathematics on the faculty of education of the Comenius University in Bratislava. In L. Balko et al. (Eds.), Aplimat 2016 – 15th conference on applied mathematics (pp. 690–699). Bratislava: Slovak University of Technology in Bratislava.Google Scholar
  19. Kubli, F. (2005). Mit Geschichten und Erzählungen motivieren: Beispiele für den mathematisch-naturwissenschaftlichen Unterricht. Cologne: Aulis Deubner.Google Scholar
  20. Kubli, F. (2002). Plädoyer für Erzählungen im Physikunterricht: Geschichte und Geschichten als Verstehenshilfen – Ergebnisse einer Untersuchung (2nd ed.). Cologne: Aulis Deubner.Google Scholar
  21. Leikin, R. (2013). Evaluating mathematical creativity: The interplay between multiplicity and insight. Psychological Test and Assessment Modeling, 55(4), 385–400.Google Scholar
  22. Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129–145). Rotterdam: Sense Publishers.Google Scholar
  23. Močnik, F., & Szabóky, A. (1856). Mértani nézlettan. Budapest: Lampel Róbert Sajátja.Google Scholar
  24. Oldknow, A., & Taylor, R. (2003). Teaching mathematics using information and communications technology. London/New York: Continuum.Google Scholar
  25. Partová, E. (2002). Prirodzené čísla. Bratislava: ASCO Art & Science.Google Scholar
  26. Povsic, J. (1966). Bibliographie von Franc Močnik. Ljubljana: Academia Scientarium et Artium Slovenica.Google Scholar
  27. Recommendation of the European Parliament and of the Council of 18 December 2006 on key competences for lifelong learning (2006/962/EC). (2006). Retrieved from
  28. Schubring, K., & Karp, A. (2014). Handbook on the history of mathematics education. New York/Heidelberg/Dordrecht/London: Springer.Google Scholar
  29. Simonka, Z. (2016). Kresliče grafov – možnosti zobrazenia a ich použitie (online aplety). In M. Hrubý & P. Račková (Eds.), Matematika, informační technologie a aplikované vědy (MITAV) (pp. 1–8). Brno: Univerzita Obrany.Google Scholar
  30. Singer, F. M., Sheffield, L. J., Freiman, V., & Brandl, M. (2016). Research on and activities for mathematically gifted students. In G. Kaiser (Ed.), ICME-13 topical surveys (pp. 1–41). New York/Heidelberg/Dordrecht/London: Springer.Google Scholar
  31. Singer, F. M., Ellerton, N., & Cai, J. (2013). Problem-posing research in mathematics education: New questions and directions. Educational Studies in Mathematics, 83(1), 1–7.CrossRefGoogle Scholar
  32. Sustar, B. (2014). Pogledi na Mocnikove matematicne ucbenike v prevodih na stevilne jezike. In M. Magajne (Ed.), Z Vrlino in Delom (pp. 41–51). Ljubljana: Narodna in univerzitetna knjiznica.Google Scholar
  33. UNESCO Universal Declaration on Cultural Diversity. (2002). Retrieved from
  34. Vančová, A., & Šulovská, M. (2016). Innovative trends in geography for pupils with mild intellectual disability. In P. Hajek, T. Sahota, & T. Jones (Eds.), CBU international conference on innovations in science and education (CBUIC) (pp. 392–398). Prague: Central Bohemia University, Unicorn College.Google Scholar
  35. Wittman, C. E. (2001). The alpha and omega of teacher education: Organizing mathematical activities. In D. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 539–552). Dordrecht: Kluwer Academic Publishers.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ján Gunčaga
    • 1
    Email author
  • Matthias Brandl
    • 2
  • Péter Körtesi
    • 3
  1. 1.Faculty of EducationComenius University in BratislavaBratislavaSlovakia
  2. 2.Faculty of Computer Science and MathematicsUniversity of PassauPassauGermany
  3. 3.Faculty of Materials Science and EngineeringUniversity of MiskolcMiskolcHungary

Personalised recommendations