Advertisement

Advances in Packaging of Poultry Meat Products

  • Sunil MangalassaryEmail author
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

Food packaging is increasingly becoming important in enhancing the microbiological safety and quality of a food product. Poultry meat can be contaminated with a variety of spoilage and pathogenic microorganisms. The common packaging systems used for poultry meat and products include tray and overwrap, modified atmosphere packaging, and vacuum packaging. In addition, various active packaging technologies such as antimicrobial packaging, oxygen scavengers, and carbon dioxide emitters are introduced to poultry packaging applications. Intelligent packaging concepts, including time-temperature, gas, and freshness indicators and sensors, have also been explored for possible commercialization in poultry packaging. Advances in food packaging technologies play a significant role in providing wholesome poultry products to consumers.

References

  1. Ahmed, I., Lin, H., Zou, L., Brody, A. L., Li, Z., Qazi, I. M., et al. (2017). A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 82, 163–178.Google Scholar
  2. Ahvenainen, R. (2003). Active and intelligent packaging: An introduction. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 5–21). Cambridge, UK: Woodhead Publishing Ltd.Google Scholar
  3. Al-Nehlawi, A., Saldo, J., Vega, L. F., & Guri, S. (2013). Effect of high carbon dioxide packaging and soluble gas stabilization pre-treatment on the shelf life and quality of chicken drumsticks. Meat Science, 94, 1–8.Google Scholar
  4. Biji, K. B., Ravishankar, C. N., Mohan, C. O., & Gopal, T. K. S. (2015). Smart packaging system for food applications: A review. Journal of Food Science and Technology, 52, 6125–6135.Google Scholar
  5. Blacha, I., Krischeck, C., & Klein, G. (2014). Influence of modified atmosphere packaging on meat quality parameters on turkey breast muscles. Journal of Food Protection, 77, 127–132.Google Scholar
  6. Bodenhamer, W. T., Jackowski, G., & Davies E. (2004). Toxin alert: Surface binding of an immunoglobulin to a flexible polymer using a water soluble varnish matrix. United States patent: 66992973.Google Scholar
  7. Bolton, F. J., & Coates, D. (1983). A study of the oxygen and carbon dioxide requirements of thermophilic campylobacters. Journal of Clinical Pathology, 36, 829–834.Google Scholar
  8. Brizio, A. P. D. R., & Prentice, C. (2014). Use of smart photochromic indicator for dynamic monitoring of the shelf life of chilled chicken based products. Meat Science, 96, 1219–1226.Google Scholar
  9. Brody, A. L. (1989). Modified atmosphere/vacuum packaging of meat. In A. L. Brody (Ed.), Controlled/modified atmosphere/vacuum packaging of foods (pp. 17–37). Trumbull, CT: Food & Nutrition Press.Google Scholar
  10. Brody, A. L. (2014). Signaling food spoilage. Food Technology, 7, 73–75.Google Scholar
  11. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods: A review. International Journal of Food Microbiology, 94, 223–253.Google Scholar
  12. Centers for Disease Control and Prevention (CDC). (2011). CDC estimates of foodborne illness in the United States. Retrieved August 20, 2017, from http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html
  13. Charles, N., Williams, S. K., & Rodrick, G. E. (2006). Effects of packaging systems on the natural microflora and acceptability of chicken breast meat. Poultry Science, 85, 1798–1801.Google Scholar
  14. Chen, L., Zhou, G., & Zhang, W. (2015). Effects of high oxygen packaging on tenderness and water holding capacity of pork through protein oxidation. Food and Bioprocess Technology, 8(11), 2287–2297.Google Scholar
  15. Chouliara, E., Badeka, A., Savvaidis, L., & Kontominas, M. G. (2008). Combined effect of irradiation and modified atmosphere packaging on shelf life extension of chicken breast meat: Microbiological, chemical, and sensory changes. European Food Research and Technology, 226, 877–888.Google Scholar
  16. Cichello, S. A. (2015). Oxygen absorbers in food preservation: A review. Journal of Food Science and Technology, 52, 1889–1885.Google Scholar
  17. Corry, J. E. L., & Atbay, H. L. (2001). Poultry as a source of Campylobacter and related organisms. Journal of Applied Microbiology, 90, 96S–114S.Google Scholar
  18. Dawson, P. L. (2010). Packaging. In C. M. Owens, C. Alvarado, & A. R. Sams (Eds.), Poultry meat processing (pp. 101–123). Boca Raton, FL: Taylor & Francis.Google Scholar
  19. Dawson, P. L., Carl, G. D., Acton, J., & Han, I. Y. (2002). Effect of lauric acid and nisin-impregnated soy-based films on the growth of Listeria monocytogenes on turkey bologna. Poultry Science, 81, 721–726.Google Scholar
  20. Demirhan, B., & Candogan, K. (2017). Active packaging of chicken meats with modified atmosphere including oxygen scavengers. Poultry Science, 96, 1394–1401.Google Scholar
  21. Dhananjayan, R., Han, I. Y., Acton, J. C., & Dawson, P. L. (2006). Growth depth effects of bacteria in ground turkey meat patties subjected to high carbon dioxide or high oxygen atmospheres. Poultry Science, 85, 1821–1828.Google Scholar
  22. Fang, Z., Zhao, Y., Warner, R. D., & Johnson, H. K. (2017). Active and intelligent packaging in meat industry. Trends in Food Science & Technology, 61, 60–71.Google Scholar
  23. FDA. (1988). Nisin preparation: Affirmation of GRAS status as a direct human food ingredient. Food Registration, 58, 11247–11250.Google Scholar
  24. Fernández-Pan, I., Carrión-Granda, X., & Maté, J. I. (2014). Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control, 36, 69–75.Google Scholar
  25. Fletcher, D. L. (2002). Poultry meat quality. World’s Poultry Science Journal, 58, 131–145.Google Scholar
  26. Fraqueza, M. J., & Barreto, A. S. (2011). Gas mixtures approach to improve turkey meat shelf life under modified atmosphere packaging: The effect of carbon monoxide. Poultry Science, 90, 2076–2084.Google Scholar
  27. Fuertes, G., Soto, I., Carrasco, R., Vargas, M., Sabattin, J., & Lagos, C. (2016). Intelligent packaging systems: Sensors and nanosensors to monitor food quality and safety. Journal of Sensors, 2016, 1–8.  https://doi.org/10.1155/2016/4046061 Google Scholar
  28. Gill, C. O. (1996). Extending the storage life of raw chilled meats. Meat Science, 43, 9–109.Google Scholar
  29. Gómez-López, V. M., Rajkovic, A., Ragaert, P., Smigic, N., & Devlieghere, F. (2009). Chlorine dioxide for minimally processed produce preservation: A review. Trends in Food Science & Technology, 20, 17–26.Google Scholar
  30. Hassanzadeh, P., Tajik, H., Rohani, S. M. R., Moradi, M., Hashemi, M., & Aliakbarlu, J. (2017). Effect of functional chitosan coating and gamma irradiation on the shelf-life of chicken meat during refrigerated storage. Radiation Physics and Chemistry, 141, 103–109.Google Scholar
  31. Herbert, U., & Kreyenschmidt, J. (2015). Comparison of oxygen and nitrogen enriched atmospheres on the growth of Listeria monocytogenes inoculated on poultry breast fillets. Journal of Food Safety, 35, 533–543.Google Scholar
  32. Herbert, U., Rossaint, S., Khanna, M., & Kreyenschmidt, J. (2013). Comparison of argon-based and nitrogen-based modified atmosphere packaging on bacterial growth and product quality of chicken breast fillets. Poultry Science, 92, 1348–1356.Google Scholar
  33. Hogan, S. A., & Kerry, J. P. (2008). Smart packaging of meat and poultry products. In J. P. Kerry & P. Butler (Eds.), Smart packaging technologies for fast moving consumer goods (pp. 33–54). West Sussex, UK: John Wiley & Sons.Google Scholar
  34. Holck, A. L., Pettersen, M. K., Moen, M. H., & Sorheim, O. (2014). Prolonged shelf life and reduced drip loss of chicken filets by the use of carbon dioxide emitters and modified atmosphere packaging. Journal of Food Protection, 77, 1133–1141.Google Scholar
  35. Hotchkiss, J. S., Baker, R. C., & Qureshi, R. A. (1985). Elevated carbon dioxide atmospheres for packaging poultry II. Effect of chicken quarters and bulk packages. Poultry Science, 64, 333–340.Google Scholar
  36. Hulánková, R., Bořilová, G., & Steinhauserová, I. (2010). Influence of modified atmospheric packaging on the survival of Salmonella Enteritidis PT 8 on the surface of chilled chicken legs. Acta Veterinaria Brno, 79, S127–S132.Google Scholar
  37. Irkin, R., & Esmer, O. K. (2015). Novel food packaging systems with natural antimicrobial agents. Journal of Food Science and Technology, 52, 6095–6111.Google Scholar
  38. Jiménez, S. M., Salsi, M. S., Tiburzi, M. C., Rafaghelli, R. C., & Pirovani, M. E. (1999). Combined use of acetic acid treatment and modified atmosphere packaging for extending the shelf-life of chilled chicken breast portions. Journal of Applied Microbiology, 87, 339–347.Google Scholar
  39. Joerger, R. D., Hoover, D. G., Barefoot, S. F., Harmon, K. M., Grinstead, D. A., & Nettles-Cutter, C. G. (2000). Bacteriocins. In J. Lederberg (Ed.), Encyclopedia of microbiology (Vol. 1, 2nd ed., pp. 383–397). San Diego, CA: Academic Press, Inc.Google Scholar
  40. Kameník, J., Saláková, A., Pavlík, Z., Borˇilová, G., Hulanková, R., & Steinhauserová, I. (2014). Vacuum skin packaging and its effect on selected properties of beef and pork meat. European Food Research and Technology, 239, 395–402.Google Scholar
  41. Kerry, J. P., O’Grady, M. N., & Hogan, S. A. (2006). Past, current and potential utilization of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science, 74, 113–140.Google Scholar
  42. King, D. A., & Nagel, C. W. (1975). Influence of carbon dioxide upon the metabolism of Psuedomonas aeruginosa. Journal of Food Science, 40, 362–366.Google Scholar
  43. Kudra, L. L., Sebranek, J. G., Dickson, J. S., Mendonca, A. F., Zhang, Q., Jackson-Davis, A., et al. (2011). Control of Salmonella enterica Typhimurium in chicken breast meat by irradiation combined with modified atmosphere packaging. Journal of Food Protection, 74, 1833–1839.Google Scholar
  44. Kudra, L. L., Sebranek, J. G., Dickson, J. S., Mendonca, A. F., Zhang, Q., Jackson-Davis, A., et al. (2012). Control of Campylobacter Jejuni in chicken breast meat by irradiation combined with modified atmosphere packaging including carbon monoxide. Journal of Food Protection, 75, 1728–1733.Google Scholar
  45. Kuswandi, B., Jayus, J., Octaviana, R., Abdullah, A., & Heng, L. Y. (2014). A novel on-package sticker sensor for real time monitoring of broiler chicken cut freshness. Packaging Technology and Science, 27, 69–81.Google Scholar
  46. Latou, E., Mexis, S. F., Badeka, A. V., Kontakos, S., & Kontominas, M. G. (2014). Combined effect of chitosan and modified atmosphere packaging for shelf life extension of chicken breast fillets. LWT-Food Science and Technology, 55, 263–268.Google Scholar
  47. Lee, K., Lee, J., Yang, H., & Song, K. B. (2016). Production and characterization of skate skin gelatin films incorporated with thyme essential oil and their application in chicken tenderloin packaging. International Journal of Food Science & Technology, 51, 1465–1472.Google Scholar
  48. Lee, S. J., & Rahman, A. T. M. M. (2014). Intelligent packaging for food products. In J. H. Han (Ed.), Innovations in food packaging (2nd ed., pp. 171–209). San Diego, CA: Academic Press.Google Scholar
  49. Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology, 55, 181–186.Google Scholar
  50. Lerasle, M., Fedrighi, M., Simonin, H., Anthoine, V., Rezé, S., Chéret, R., et al. (2014). Combined use of modified atmosphere packaging and high pressure to extend the shelf-life of raw poultry sausage. Innovative Food Science & Emerging Technologies, 23, 54–60.Google Scholar
  51. Liu, Y., Chakrabartty, S., & Alocilja, E. (2007). Fundamental building blocks for molecular bio-wire based forward error-correcting biosensors. Nanotechnology, 18, 1–6.Google Scholar
  52. Lockhart, H. E. (1997). A paradigm for packaging. Packaging Technology and Science, 10, 237–252.Google Scholar
  53. Lopez-Rubio, A., Almenar, E., Hernandez-Munoz, P., Lagaron, J. M., Catala, R., & Gavara, R. (2004). Overview of active polymer-based packaging technologies for food applications. Food Reviews International, 20, 357–387.Google Scholar
  54. Lopez-Rubio, A., Gavara, R., & Lagaron, M. (2006). Bioactive packaging: Turing food into healthy food through biomaterials. Trends in Food Science & Technology, 17, 567–575.Google Scholar
  55. Luno, M., Roncales, P., Djenane, D., & Beltran, J. A. (2000). Beef shelf life in low O2 and high CO2 atmospheres containing different low CO concentrations. Meat Science, 55, 413–419.Google Scholar
  56. Ma, J. (2012). Allyl isothiocyanate derived from oriental mustard meal as a natural antimicrobial to inhibit the growth of molds on bread. MS thesis, University of Guelph, Guelph, ON.Google Scholar
  57. Mangalassary, S., Han, I. Y., Rieck, J., Acton, J., & Dawson, P. L. (2008). Effect of combining nisin and/or lysozyme with in-package pasteurization for control of Listeria monocytogenes in ready-to-eat turkey bologna during refrigerated storage. Food Microbiology, 25, 866–870.Google Scholar
  58. Mangalassary, S., Han, I. Y., Rieck, J., Acton, J., Jiang, X., & Dawson, P. (2007). Effect of combining nisin and/or lysozyme with in-package pasteurization on thermal inactivation of Listeria moocytogenes in ready to eat turkey bologna. Journal of Food Protection, 70, 2503–2511.Google Scholar
  59. Matthews, B., Mangalassary, S., Darby, D., & Cooksey, K. (2010). Effectiveness of Barrier film with a cellulose coating that crries nisin blends for the Inhibition of Listeria Monocytogenes. Packaging Technology and Science, 23, 267–273.Google Scholar
  60. McCormick, K. E., Han, I. Y., Acton, J. C., Sheldon, B. W., & Dawson, P. L. (2003). In-package pasteurization combined with biocide-impregnated films to inhibit Listeria monocytogenes and Salmonella Typhimurium in turkey bologna. Journal of Food Science, 70, M52–M57.Google Scholar
  61. McMillan, K. W. (2008). Where is MAP going? A review and future potential of modified atmosphere packaging of meat. Meat Science, 80, 43–65.Google Scholar
  62. McMillan, K. W. (2017). Advancements in meat packaging. Meat Science, 132, 153–162.Google Scholar
  63. McMillan, K. W., Huang, N. Y., Ho, C. P., & Smith, B. S. (1999). Quality and shelf-life of meat in case-ready modified atmosphere packaging. In X. L. Xiong, F. Shahidi, & C. T. Ho (Eds.), Quality attributes in muscle foods (pp. 73–93). New York: ACS Symposium Series, Plenum Publishing Corporation.Google Scholar
  64. Mead, G. C. (2004). Microbiological quality of poultry meat: A review. Brazilian Journal of Poultry Science, 6, 135–142.Google Scholar
  65. Meredith, H., Valdramisid, V., Rotabakk, V. T., Sivertsvik, M., & McDowell, D. (2014). Effect of different modified atmosphere packaging gaseous combinations on Campylobacter and the shelf-life of chilled poultry fillets. Food Micrbiology, 44, 196–203.Google Scholar
  66. Mexis, F., Chouliara, E., & Kontominas, M. G. (2012). Shelf life extension of ground chicken meat using an oxygen absorber and citrus extract. LWT - Food Science and Technology, 49, 21–27.Google Scholar
  67. Millar, S., Wilson, R., Moss, B. W., & Ledward, D. A. (1994). Oxymyoglobin formation in meat and poultry. Meat Science, 36, 397–406.Google Scholar
  68. Mohebi, E., & Marquez, L. (2015). Intelligent packaging in meat industry: An overview of existing solutions. Journal of Food Science and Technology, 52, 3947–3964.Google Scholar
  69. Mondry, H. (1996). Packaging systems for processed meat. In S. A. Taylor, M. Raimundo, F. Severini, & J. M. Smulders (Eds.), Meat quality and meat packaging (pp. 323–333). Utrecht, Netherlands: ECCEAMST.Google Scholar
  70. Mulla, M., Ahmed, J., Al-Attar, H., Castro-Aguirre, E., Arfat, Y. A., & Auras, R. (2017). Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control, 73, 663–671.Google Scholar
  71. Murphy, R. Y., Duncan, L. K., Driscoll, K. H., Marcy, J. A., & Beard, B. L. (2003). Thermal inactivation of Listeria monocytogenes on ready-to-eat turkey meat products during post-cook in-package pasteurization with hot water. Journal of Food Protection, 666, 1618–1622.Google Scholar
  72. Nair, D. V. T., Kiess, A., Nannapaneni, R., Schilling, W., & Sharma, C. S. (2015). The combined efficacy of carvacrol and modified atmosphere packaging on the survival of Salmonella, Campylobacter jejuni, and lactic acid bacteria on turkey breast cutlets. Food Microbiology, 49, 134–141.Google Scholar
  73. Nam, K. C., Ko, K. Y., Min, B. R., Ismail, H., Lee, E. J., Cordray, J., et al. (2007). Effects of oleoresin-tocopherol combinations on lipid oxidation, off-odor, and color of irradiated raw and cooked pork patties. Meat Science, 75, 61–70.Google Scholar
  74. Natarajan, N., & Sheldon, B. W. (2000). Efficacy of nisin coated polymer film to inactivate Salmonella Typhimurium on fresh broiler skin. Journal of Food Protection, 63, 1189–1196.Google Scholar
  75. O’Grady, M. N., & Kerry, J. P. (2008). Smart packaging technology. In F. Toldra (Ed.), Meat biotechnology (pp. 425–451). New York: Springer.Google Scholar
  76. OECD-FAO. (2017). OCED-FAO agricultural outlook 2017–2026. Retrieved August 20, 2017, from  https://doi.org/10.1787/agr_outlook-2017-en
  77. Oh, E., McMullen, L. M., Chui, L., & Jeon, B. (2017). Differential survival of hyper-aerotolerant Campylobacter jejuni under different gas conditions. Frontiers in Microbiology, 8, 954.Google Scholar
  78. Olaimat, A. N., Fang, Y., & Holley, R. A. (2014). inhibition of Campylobacter jejuni on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized oriental mustard extract. International Journal of Food Microbiology, 187, 77–82.Google Scholar
  79. Olaimat, A. N., & Holley, R. A. (2015). Control of Salmonella on fresh chicken breasts by k-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized Oriental mustard extract plus EDTA. Food Microbiology, 48, 83–88.Google Scholar
  80. Oral, N., Vatansever, L., Sezer, C., Aydin, B., Guven, A., Gulmez, M., et al. (2009). Effect of absorbent pad containing oregano essential oil on the shelf life extension of overwrap packed chicken drumsticks stored at four degree Celsius. Poultry Science, 88, 1459–1465.Google Scholar
  81. Otoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J., & McHugh, T. H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60–73.Google Scholar
  82. Park, H. R., Kim, Y. A., Jung, S. W., Kim, H. C., & Lee, S. J. (2013). Response of microbial time temperature indicator to quality indices of chicken breast meat during storage. Food Science and Biotechnology, 22(4), 1145–1152.Google Scholar
  83. Petrou, S., Tsiraki, M., Giatrakou, V., & Savvaidis, I. N. (2012). Chitosan dipping or oregano oil treatments, singly or combined on modified atmosphere packaged chicken breast meat. International Journal of Food Microbiology, 156(3), 264–271.Google Scholar
  84. Phillips, C. A. (1996). Review: Modified atmosphere packaging and its effect on the microbiological quality and safety of produce. International Journal of Food Science and Technology, 31, 463–479.Google Scholar
  85. Ranson, S. L., Walker, D. A., & Clarke, I. D. (1960). Effect of carbon dioxide on mitochondrial enzymes from Ricinus. The Biochemical Journal, 76, 216–221.Google Scholar
  86. Rao, D. N., & Sachindra, N. M. (2002). Modified atmosphere and vacuum packaging of meat and poultry products. Food Review International, 18, 263–293.Google Scholar
  87. Realini, C. E., & Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Science, 98, 404–419.Google Scholar
  88. Ribeiro-Santos, R., Andraide, M., Ramos de Melo, N., & Sanches-Silva, A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. Trends in Food Science & Technology, 61, 132–140.Google Scholar
  89. Robertson, G. (2014). Biobased but not biodegradable. Food Technology, 6, 61–70.Google Scholar
  90. Rodriguez, M. B. R., Conte Junior, C. A., Carneiro, C. S., Franco, R. M., & Mano, S. B. (2014). The effect of carbon dioxide on the shelf life of ready to eat shredded chicken breast stored under refrigeration. Poultry Science, 93, 194–199.Google Scholar
  91. Rossaint, S., Klausmann, S., & Kreyenschmidt, J. (2015). Effect of high oxygen and oxygen free modified atmosphere packaging on the spoilage process of poultry breast fillets. Poultry Science, 94, 96–103.Google Scholar
  92. Rotbakk, B. T., Birkeland, S., & Jeskrud, W. K. (2006). Effect of modified atmosphere packaging and soluble gas stabilization on the shelf life of skinless chicken breast fillets. Journal of Food Science, 71, S124–S131.Google Scholar
  93. Russel, S. M., Fletcher, D. L., & Cox, N. A. (1996). Spoilage bacteria of fresh broiler chicken meat. Poultry Science, 75, 2041–2047.Google Scholar
  94. Sade, E., Murros, A., & Bjorkroth, J. (2013). Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiology, 34, 252–258.Google Scholar
  95. Saucier, L., Gendron, C., & Gari’epy, C. (2000). Shelf life of ground poultry meat stored under modified atmosphere. Poultry Science, 79, 1851–1856.Google Scholar
  96. Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States – major pathogens. Emerging Infectious Diseases, 17, 7–15.Google Scholar
  97. Scharrf, R. L. (2012). Economic burden from health losses due to foodborne illness in the United States. Journal of Food Protection, 75, 123–131.Google Scholar
  98. Sears, D. F., & Eisenberg, R. M. (1961). A model representing physiological role of CO2 at the cell membrane. The Journal of General Physiology, 44, 869–887.Google Scholar
  99. Shin, J., Harte, B., Selke, S., & Lee, Y. (2010). Use of a controlled chlorine dioxide system in combination with modified atmosphere packaging to control the growth of pathogens. Journal of Food Quality, 34, 220–228.Google Scholar
  100. Sivertsvik, M., & Jensen, J. S. (2005). Solubility and absorption rate of carbon dioxide into non-respiring foods. Part 3: Cooked meat products. Journal of Food Engineering, 70, 499–505.Google Scholar
  101. Skarp, C. P., Hanninen, M. L., & Rautelin, H. I. (2016). Campylobacteriosis: The role of poultry meat. Clinical Microbiology and Infection, 22, 103–109.Google Scholar
  102. Soares, N. F. F., Pires, A. C. S., & Camilloto, G. P. (2008). Sachê antimicrobiano para uso em alimentos. Brazilian Patent PI 0603881–6 A.Google Scholar
  103. Speer, D. V., Edwards, F. B., Beckwith, S. W., Rivett, J., & Kennedy, T. D. (2009). Method of triggering a film containing an oxygen scavenger. (US 7504045 B2). In Google Patents. Retrieved August 21, 2017, from http://www.google.com.tr/patents/US7504045
  104. Stratakos, A., Delgado-Pando, G., Linton, M., Patterson, M. F., & Koidis, A. (2015). Synergism between high-pressure processing and active packaging against Listeria monocytogenes in ready-to-eat chicken breast. Innovative Food Science & Emerging Technologies, 27, 41–47.Google Scholar
  105. Sung, S. Y., Sin, L. T., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W. A. W. A., et al. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33, 110–123.Google Scholar
  106. Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68, 408–420.Google Scholar
  107. ULMA. (2014). Poultry packaging solutions. Retrieved August 17, 2017, from http://www.harpak-ulma.com/packaging-solutions/fresh-food-packaging/poultry
  108. Van Rooyen, L. A., Allen, P., & O’Connor, D. I. (2017). The application of carbon monoxide in meat packaging needs to be re-evaluated within the EU: An overview. Meat Science, 132, 179–188.Google Scholar
  109. Vanderroost, M., Ragert, P., Devlieghere, F., & Meulenaer, B. D. (2014). Intelligent food packaging: The next generation. Trends in Food Science & Technology, 39, 47–62.Google Scholar
  110. Wolfe, S. K. (1980). Use of CO and C02 enriched atmospheres for meats, fish, and produce. Food Technology, 34, 55–58.Google Scholar
  111. Yam, K. L. (2012). In K. L. Yam & D. S. Lee (Eds.), Intelligent packaging to enhance food safety and quality (pp. 137–152). Cambridge, UK: Woodhead Publishing Ltd.Google Scholar
  112. Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging: Concepts and applications. Journal of Food Science, 70, R1–R10.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Food Science and Technology ProgramCalifornia State UniversityLos AngelesUSA

Personalised recommendations