Modelling of Cerebrospinal Fluid Flow by Computational Fluid Dynamics

  • Vartan KurtcuogluEmail author
  • Kartik Jain
  • Bryn A. Martin
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


The movement of cerebrospinal fluid (CSF) is linked to the cardiovascular and respiratory systems. The heart not only drives blood flow but is also at the origin of CSF pulsation through the expansion and contraction of cerebral blood vessels. Respiration modulates this cardiovascular action while also directly influencing spinal subarachnoid space (SAS) volume. CSF dynamics may be altered by pathologies such as hydrocephalus, Chiari malformation, syringomyelia and glioblastoma, and, in turn, dynamics of the CSF can be analysed to aid in disease diagnosis and prognosis. Several reviews delineate the current understanding of CSF motion [1–3]. This chapter describes the basic approach of and trends in computational fluid dynamics (CFD) modelling of CSF flow.


  1. 1.
    Hladky, S.B., Barrand, M.A.: Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 11(1), 26 (2014)CrossRefGoogle Scholar
  2. 2.
    Linninger, A.A., Tangen, K., Hsu, C.-Y., Frim, D.: Cerebrospinal fluid mechanics and its coupling to cerebrovascular dynamics. Annu. Rev. Fluid Mech. 48(1), 219–257 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brinker, T., Stopa, E., Morrison, J., Klinge, P.: A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 11, 10 (2014)CrossRefGoogle Scholar
  4. 4.
    Bloomfield, I.G., Johnston, I.H., Bilston, L.E.: Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr. Neurosurg. 28(5), 246–251 (1998)CrossRefGoogle Scholar
  5. 5.
    Brydon, H.L., Hayward, R., Harkness, W., Bayston, R.: Physical properties of cerebrospinal fluid of relevance to shunt function. 1: the effect of protein upon CSF viscosity. Br. J. Neurosurg. 9(5), 639–644 (1995)CrossRefGoogle Scholar
  6. 6.
    Jacobson, E.E., Fletcher, D.F., Morgan, M.K., Johnston, I.H.: Fluid dynamics of the cerebral aqueduct. Pediatr. Neurosurg. 24(5), 229–236 (1996)CrossRefGoogle Scholar
  7. 7.
    Caiazzo, A., Vignon-Clementel, I.E.: Mathematical modeling of blood flow in the cardiovascular system. In: Sack, I., Schaeffter, T. (eds.) Quantification of Biophysical Parameters in Medical Imaging, pp. 45–70. Springer, Cham (2018)CrossRefGoogle Scholar
  8. 8.
    Ballester, M.A.G., Zisserman, A., Brady, M.: Segmentation and measurement of brain structures in MRI including confidence bounds. Med. Image Anal. 4(3), 189–200 (2000)CrossRefGoogle Scholar
  9. 9.
    Gupta, S., Soellinger, M., Boesiger, P., Poulikakos, D., Kurtcuoglu, V.: Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. J. Biomech. Eng. 131(2), 021010 (2009)CrossRefGoogle Scholar
  10. 10.
    Gupta, S., Soellinger, M., Grzybowski, D.M., Boesiger, P., Biddiscombe, J., Poulikakos, D., Kurtcuoglu, V.: Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I. Computational model. J. R. Soc. Interface. 7(49), 1195–1204 (2010)CrossRefGoogle Scholar
  11. 11.
    Heidari Pahlavian, S., Yiallourou, T., Tubbs, R.S., Bunck, A.C., Loth, F., Goodin, M., Raisee, M., Martin, B.A.: The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine. PLoS One. 9(4), e91888 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Sass, L.R., Khani, M., Natividad, G.C., Tubbs, R.S., Baledent, O., Martin, B.A.: A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets. Fluids Barriers CNS. 14(1), 36 (2017)CrossRefGoogle Scholar
  13. 13.
    Cloyd, M.W., Low, F.N.: Scanning electron microscopy of the subarachnoid space in the dog. I. Spinal cord levels. J. Comp. Neurol. 153(4), 325–368 (1974)CrossRefGoogle Scholar
  14. 14.
    Allen, D.J., Low, F.N.: Scanning electron microscopy of the subarachnoid space in the dog. III. Cranial levels. J. Comp. Neurol. 161(4), 515–539 (1975)CrossRefGoogle Scholar
  15. 15.
    Killer, H.E., Laeng, H.R., Flammer, J., Groscurth, P.: Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br. J. Ophthalmol. 87(6), 777–781 (2003)CrossRefGoogle Scholar
  16. 16.
    Scott, G.G., Coats, B.: Microstructural characterization of the pia-arachnoid complex using optical coherence tomography. IEEE Trans. Med. Imaging. 34(7), 1452–1459 (2015)CrossRefGoogle Scholar
  17. 17.
    Mortazavi, M.M., Quadri, S.A., Khan, M.A., Gustin, A., Suriya, S.S., Hassanzadeh, T., Fahimdanesh, K.M., Adl, F.H., Fard, S.A., Taqi, M.A., Armstrong, I., Martin, B.A., Tubbs, R.S.: Subarachnoid trabeculae: a comprehensive review of their embryology, histology, morphology, and surgical significance. World Neurosurg. 111, 279–290 (2018)CrossRefGoogle Scholar
  18. 18.
    Vandenwesthuizen, J., Duplessis, J.P.: Quantification of unidirectional fiber bed permeability. J. Compos. Mater. 28(7), 619–637 (1994)CrossRefGoogle Scholar
  19. 19.
    Chai, Z.H., Shi, B.C., Lu, J.H., Guo, Z.L.: Non-Darcy flow in disordered porous media: a lattice Boltzmann study. Comput. Fluids. 39(10), 2069–2077 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Tully, B., Ventikos, Y.: Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J. Fluid Mech. 667, 188–215 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Kang, Q.J., Zhang, D.X., Chen, S.Y.: Unified lattice Boltzmann method for flow in multiscale porous media. Phys. Rev. E. 66(5), 056307 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)CrossRefGoogle Scholar
  23. 23.
    Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 31(3), 1116–1128 (2006)CrossRefGoogle Scholar
  24. 24.
    The Vascular Modeling Toolkit. Available from:
  25. 25.
    Jain, K.: Transition to turbulence in physiological flows: Direct numerical simulation of hemodynamics in intracranial aneurysms and cerebrospinal fluid hydrodynamics in the spinal canal. 2016, Universität SiegenGoogle Scholar
  26. 26.
    Almotiri, J., Elleithy, K., Elleithy, A.: Retinal vessels segmentation techniques and algorithms: a survey. Appl. Sci. 8(2), 155 (2018)CrossRefGoogle Scholar
  27. 27.
    Simonovsky, M., et al.: A deep metric for multimodal registration. In: 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Athens, Greece (2016)Google Scholar
  28. 28.
    Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions. J. Digit. Imaging. 30(4), 449–459 (2017)CrossRefGoogle Scholar
  29. 29.
    Hjelle, Ø., Dæhlen, M.: Triangulations and applications. In: Mathematics and Visualization, p. 234. Springer-Verlag, Berlin/New York (2006)zbMATHGoogle Scholar
  30. 30.
    De Boor, C.: A practical guide to splines. In: Applied Mathematical Sciences, Rev edn, p. 346. Springer. xviii, New York (2001)Google Scholar
  31. 31.
    Helgeland, A., Mardal, K.A., Haughton, V., Reif, B.A.: Numerical simulations of the pulsating flow of cerebrospinal fluid flow in the cervical spinal canal of a Chiari patient. J. Biomech. 47(5), 1082–1090 (2014)CrossRefGoogle Scholar
  32. 32.
    Kurtcuoglu, V., Soellinger, M., Summers, P., Boomsma, K., Poulikakos, D., Boesiger, P., Ventikos, Y.: Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of Sylvius. J. Biomech. 40(6), 1235–1245 (2007)CrossRefGoogle Scholar
  33. 33.
    Stoverud, K.H., Langtangen, H.P., Ringstad, G.A., Eide, P.K., Mardal, K.A.: Computational investigation of cerebrospinal fluid dynamics in the posterior cranial fossa and cervical subarachnoid space in patients with Chiari I malformation. PLoS One. 11(10), e0162938 (2016)CrossRefGoogle Scholar
  34. 34.
    Rutkowska, G., Haughton, V., Linge, S., Mardal, K.A.: Patient-specific 3D simulation of cyclic CSF flow at the craniocervical region. Am. J. Neuroradiol. 33(9), 1756–1762 (2012)CrossRefGoogle Scholar
  35. 35.
    Jain, K., Ringstad, G., Eide, P.K., Mardal, K.A.: Direct numerical simulation of transitional hydrodynamics of the cerebrospinal fluid in Chiari I malformation: the role of cranio-vertebral junction. Int. J. Numer. Method Biomed. Eng. 33(9), (2017)CrossRefGoogle Scholar
  36. 36.
    Stockman, H.W.: Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space. J. Biomech. Eng. 128(1), 106 (2005)CrossRefGoogle Scholar
  37. 37.
    Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Haslam, M., Zamir, M.: Pulsatile flow in tubes of elliptic gross sections. Ann. Biomed. Eng. 26(5), 780–787 (1998)CrossRefGoogle Scholar
  39. 39.
    Gupta, S., Poulikakos, D., Kurtcuoglu, V.: Analytical solution for pulsatile viscous flow in a straight elliptic annulus and application to the motion of the cerebrospinal fluid. Phys. Fluids. 20(9), (2008)ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    Boutsianis, E., Gupta, S., Boomsma, K., Poulikakos, D.: Boundary conditions by Schwarz-Christoffel mapping in anatomically accurate hemodynamics. Ann. Biomed. Eng. 36(12), 2068–2084 (2008)CrossRefGoogle Scholar
  41. 41.
    Enzmann, D.R., Pelc, N.J.: Brain motion: measurement with phase-contrast MR imaging. Radiology. 185(3), 653–660 (1992)CrossRefGoogle Scholar
  42. 42.
    Soellinger, M., Rutz, A.K., Kozerke, S., Boesiger, P.: 3D cine displacement-encoded MRI of pulsatile brain motion. Magn. Reson. Med. 61(1), 153–162 (2009)CrossRefGoogle Scholar
  43. 43.
    Pahlavian, S.H., Oshinski, J., Zhong, X., Loth, F., Amini, R.: Regional quantification of brain tissue strain using displacement-encoding with stimulated echoes magnetic resonance imaging. J. Biomech. Eng. 140(8), (2018)CrossRefGoogle Scholar
  44. 44.
    Shannon, C.E.: Communication in the presence of noise. Proceedings of the Institute of Radio Engineers. 37(1), 10–21 (1949)MathSciNetGoogle Scholar
  45. 45.
    Luke, H.D.: The origins of the sampling theorem. IEEE Commun. Mag. 37(4), 106–108 (1999)CrossRefGoogle Scholar
  46. 46.
    Terem, I., Ni, W.W., Goubran, M., Rahimi, M.S., Zaharchuk, G., Yeom, K.W., Moseley, M.E., Kurt, M., Holdsworth, S.J.: Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn. Reson. Med. 80, 2549 (2018)CrossRefGoogle Scholar
  47. 47.
    Ma, Q., Ineichen, B.V., Detmar, M., Proulx, S.T.: Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8(1), 1434 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Grzybowski, D.M., Herderick, E.E., Kapoor, K.G., Holman, D.W., Katz, S.E.: Human arachnoid granulations part I: a technique for quantifying area and distribution on the superior surface of the cerebral cortex. Cerebrospinal Fluid Res. 4, 6 (2007)CrossRefGoogle Scholar
  49. 49.
    Holman, D.W., Kurtcuoglu, V., Grzybowski, D.M.: Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. II. In vitro arachnoid outflow model. J. R. Soc. Interface. 7(49), 1205–1218 (2010)CrossRefGoogle Scholar
  50. 50.
    Eide, P.K., Vatnehol, S.A.S., Emblem, K.E., Ringstad, G.: Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci. Rep. 8(1), 7194 (2018)ADSCrossRefGoogle Scholar
  51. 51.
    Ma, Q., Ries, M., Decker, Y., Muller, A., Riner, C., Bucker, A., Fassbender, K., Detmar, M., Proulx, S.T.: Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol. 137, 151 (2019)CrossRefGoogle Scholar
  52. 52.
    Linge, S.O., Haughton, V., Lovgren, A.E., Mardal, K.A., Langtangen, H.P.: CSF flow dynamics at the craniovertebral junction studied with an idealized model of the subarachnoid space and computational flow analysis. Am. J. Neuroradiol. 31(1), 185–192 (2010)CrossRefGoogle Scholar
  53. 53.
    Siyahhan, B., Knobloch, V., de Zelicourt, D., Asgari, M., Schmid Daners, M., Poulikakos, D., Kurtcuoglu, V.: Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J. R. Soc. Interface. 11(94), 20131189 (2014)CrossRefGoogle Scholar
  54. 54.
    Xie, L.L., Kang, H.Y., Xu, Q.W., Chen, M.J., Liao, Y.H., Thiyagarajan, M., O'Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R., Nedergaard, M.: Sleep drives metabolite clearance from the adult brain. Science. 342(6156), 373–377 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    Rikhtegar, F., Edelman, E.R., Olgac, U., Poulikakos, D., Kurtcuoglu, V.: Drug deposition in coronary arteries with overlapping drug-eluting stents. J. Control. Release. 238, 1–9 (2016)CrossRefGoogle Scholar
  56. 56.
    Rodi, W.: Turbulence modeling and simulation in hydraulics: a historical review. J. Hydraul. Eng. 143(5), (2017)CrossRefGoogle Scholar
  57. 57.
    Jacobson, E.E., Fletcher, D.F., Morgan, M.K., Johnston, I.H.: Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis. Med. Biol. Eng. Comput. 37(1), 59–63 (1999)CrossRefGoogle Scholar
  58. 58.
    Fin, L., Grebe, R.: Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius. Comput. Methods Biomech. Biomed. Engin. 6(3), 163–170 (2003)CrossRefGoogle Scholar
  59. 59.
    Kurtcuoglu, V., Poulikakos, D., Ventikos, Y.: Computational modeling of the mechanical behavior of the cerebrospinal fluid system. J. Biomech. Eng. 127(2), 264–269 (2005)CrossRefGoogle Scholar
  60. 60.
    Du Boulay, G., O'Connell, J., Currie, J., Bostick, T., Verity, P.: Further investigations on pulsatile movements in the cerebrospinal fluid pathways. Acta Radiol. Diagn. 13(0), 496–523 (1972)CrossRefGoogle Scholar
  61. 61.
    Kurtcuoglu, V., Soellinger, M., Summers, P., Poulikakos, D., Boesiger, P.: Mixing and modes of mass transfer in the third cerebral ventricle: a computational analysis. J. Biomech. Eng. 129(5), 695–702 (2007)CrossRefGoogle Scholar
  62. 62.
    Cheng, S., Tan, K., Bilston, L.E.: The effects of the interthalamic adhesion position on cerebrospinal fluid dynamics in the cerebral ventricles. J. Biomech. 43(3), 579–582 (2010)CrossRefGoogle Scholar
  63. 63.
    Howden, L., Giddings, D., Power, H., Aroussi, A., Vloeberghs, M., Garnett, M., Walker, D.: Three-dimensional cerebrospinal fluid flow within the human ventricular system. Comput. Methods Biomech. Biomed. Engin. 11(2), 123–133 (2008)CrossRefGoogle Scholar
  64. 64.
    Bergsneider, M., Black, P.M., Klinge, P., Marmarou, A., Relkin, N.: Surgical management of idiopathic normal-pressure hydrocephalus. Neurosurgery. 57(3 Suppl), S29–S39; discussion ii--v (2005)Google Scholar
  65. 65.
    Gholampour, S., Fatouraee, N., Seddighi, A.S., Seddighi, A.: Numerical simulation of cerebrospinal fluid hydrodynamics in the healing process of hydrocephalus patients. J. Appl. Mech. Tech. Phys. 58(3), 386–391 (2017)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    Demerdash, A., Rocque, B.G., Johnston, J., Rozzelle, C.J., Yalcin, B., Oskouian, R., Delashaw, J., Tubbs, R.S.: Endoscopic third ventriculostomy: a historical review. Br. J. Neurosurg. 31(1), 28–32 (2017)CrossRefGoogle Scholar
  67. 67.
    Gholampour, S.: FSI simulation of CSF hydrodynamic changes in a large population of non-communicating hydrocephalus patients during treatment process with regard to their clinical symptoms. PLoS One. 13(4), e0196216 (2018)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Farnoush, A., Tan, K., Juge, L., Bilston, L.E., Cheng, S.: Effect of endoscopic third ventriculostomy on cerebrospinal fluid pressure in the cerebral ventricles. J. Clin. Neurosci. 23, 63–67 (2016)CrossRefGoogle Scholar
  69. 69.
    Khani, M., Sass, L., Xing, T., Sharp, M.K., Balédent, O., Martin, B.: Anthropomorphic model of intrathecal cerebrospinal fluid dynamics within the spinal subarachnoid space: spinal cord nerve roots increase steady-streaming. J. Biomech. Eng. 140, 081012 (2018)CrossRefGoogle Scholar
  70. 70.
    Elliott, N.S.J., Bertram, C.D., Martin, B.A., Brodbelt, A.R.: Syringomyelia: a review of the biomechanics. J. Fluids Struct. 40, 1–24 (2013)ADSCrossRefGoogle Scholar
  71. 71.
    Shaffer, N., Martin, B., Loth, F.: Cerebrospinal fluid hydrodynamics in type I Chiari malformation. Neurol. Res. 33(3), 247–260 (2011)CrossRefGoogle Scholar
  72. 72.
    Loth, F., Yardimci, M.A., Alperin, N.: Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J. Biomech. Eng. 123(1), 71–79 (2001)Google Scholar
  73. 73.
    The Visible Human Project. 1997 [cited 2011 February]; Available from:
  74. 74.
    Stockman, H.W.: Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space. J. Biomech. Eng. 128(1), 106–114 (2006)CrossRefGoogle Scholar
  75. 75.
    Sweetman, B., Linninger, A.A.: Cerebrospinal fluid flow dynamics in the central nervous system. Ann. Biomed. Eng. 39(1), 484–496 (2011)CrossRefGoogle Scholar
  76. 76.
    Linninger, A.A., Xenos, M., Zhu, D.C., Somayaji, M.R., Kondapalli, S., Penn, R.D.: Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Biomed. Eng. 54(2), 291–302 (2007)CrossRefGoogle Scholar
  77. 77.
    Sweetman, B., Xenos, M., Zitella, L., Linninger, A.A.: Three-dimensional computational prediction of cerebrospinal fluid flow in the human brain. Comput. Biol. Med. 41(2), 67–75 (2011)CrossRefGoogle Scholar
  78. 78.
    Yiallourou, T.I., Kroger, J.R., Stergiopulos, N., Maintz, D., Martin, B.A., Bunck, A.C.: Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PLoS One. 7(12), e52284 (2012)ADSCrossRefGoogle Scholar
  79. 79.
    Lindstrom, E.K., Schreiner, J., Ringstad, G.A., Haughton, V., Eide, P.K., Mardal, K.A.: Comparison of phase-contrast MR and flow simulations for the study of CSF dynamics in the cervical spine. Neuroradiol. J. 31(3), 292–298 (2018)CrossRefGoogle Scholar
  80. 80.
    Clarke, E.C., Fletcher, D.F., Stoodley, M.A., Bilston, L.E.: Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia. J. Biomech. 46(11), 1801–1809 (2013)CrossRefGoogle Scholar
  81. 81.
    Heidari Pahlavian, S., Bunck, A.C., Loth, F., Shane Tubbs, R., Yiallourou, T., Kroeger, J.R., Heindel, W., Martin, B.A.: Characterization of the discrepancies between four-dimensional phase-contrast magnetic resonance imaging and in-silico simulations of cerebrospinal fluid dynamics. J. Biomech. Eng. 137(5), 051002 (2015)CrossRefGoogle Scholar
  82. 82.
    Heidari Pahlavian, S., Bunck, A.C., Thyagaraj, S., Giese, D., Loth, F., Hedderich, D.M., Kroger, J.R., Martin, B.A.: Accuracy of 4D flow measurement of cerebrospinal fluid dynamics in the cervical spine: an in vitro verification against numerical simulation. Ann. Biomed. Eng. 44(11), 3202–3214 (2016)CrossRefGoogle Scholar
  83. 83.
    Thyagaraj, S., Pahlavian, S.H., Sass, L.R., Loth, F., Vatani, M., Choi, J.W., Tubbs, R.S., Giese, D., Kroger, J.R., Bunck, A.C., Martin, B.A.: An MRI-compatible hydrodynamic simulator of cerebrospinal fluid motion in the cervical spine. IEEE Trans. Biomed. Eng. (2017)Google Scholar
  84. 84.
    Martin, B.A., Yiallourou, T.I., Pahlavian, S.H., Thyagaraj, S., Bunck, A.C., Loth, F., Sheffer, D.B., Kroger, J.R., Stergiopulos, N.: Inter-operator reliability of magnetic resonance image-based computational fluid dynamics prediction of cerebrospinal fluid motion in the cervical spine. Ann. Biomed. Eng. 44(5), 1524–1537 (2016)CrossRefGoogle Scholar
  85. 85.
    Bunck, A.C., Kroger, J.R., Juttner, A., Brentrup, A., Fiedler, B., Schaarschmidt, F., Crelier, G.R., Schwindt, W., Heindel, W., Niederstadt, T., Maintz, D.: Magnetic resonance 4D flow characteristics of cerebrospinal fluid at the craniocervical junction and the cervical spinal canal. Eur. Radiol. 21(8), 1788–1796 (2011)CrossRefGoogle Scholar
  86. 86.
    Bunck, A.C., Kroeger, J.R., Juettner, A., Brentrup, A., Fiedler, B., Crelier, G.R., Martin, B.A., Heindel, W., Maintz, D., Schwindt, W., Niederstadt, T.: Magnetic resonance 4D flow analysis of cerebrospinal fluid dynamics in Chiari I malformation with and without syringomyelia. Eur. Radiol. 22(9), 1860–1870 (2012)CrossRefGoogle Scholar
  87. 87.
    Khani, M., Xing, T., Gibbs, C., Oshinski, J.N., Stewart, G.R., Zeller, J.R., Martin, B.A.: Nonuniform moving boundary method for computational fluid dynamics simulation of intrathecal cerebrospinal flow distribution in a cynomolgus monkey. J. Biomech. Eng. 139(8), (2017)CrossRefGoogle Scholar
  88. 88.
    Gardner, W.J.: Hydrodynamic mechanism of Syringomyelia: its relationship to Myelocele. J. Neurol. Neurosurg. Psychiatry. 28, 247–259 (1965)CrossRefGoogle Scholar
  89. 89.
    Williams, B.: On the pathogenesis of syringomyelia: a review. J. R. Soc. Med. 73(11), 798–806 (1980)CrossRefGoogle Scholar
  90. 90.
    Lockey, P., Poots, G., Williams, B.: Theoretical aspects of the attenuation of pressure pulses within cerebrospinal-fluid pathways. Med. Biol. Eng. 13(6), 861–869 (1975)CrossRefGoogle Scholar
  91. 91.
    Berkouk, K., Carpenter, P.W., Lucey, A.D.: Pressure wave propagation in fluid-filled co-axial elastic tubes, part 1: basic theory. J. Biomech. Eng. 125(6), 852–856 (2003)CrossRefGoogle Scholar
  92. 92.
    Carpenter, P.W., Berkouk, K., Lucey, A.D.: Pressure wave propagation in fluid-filled co-axial elastic tubes, part 2: mechanisms for the pathogenesis of syringomyelia. J. Biomech. Eng. 125(6), 857–863 (2003)CrossRefGoogle Scholar
  93. 93.
    Carpenter, P.W., Berkouk, K., Lucey, A.D.: A theoretical model of pressure wave propagation in the human spinal CSF system. Eng. Mech. 6(4/5), 213–228 (1999)Google Scholar
  94. 94.
    Bertram, C.D., Brodbelt, A.R., Stoodley, M.A.: The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord. J. Biomech. Eng. 127(7), 1099–1109 (2005)CrossRefGoogle Scholar
  95. 95.
    Elliott, N.S.J., Lockerby, D.A., Brodbelt, A.R.: The pathogenesis of syringomyelia: a re-evaluation of the elastic-jump hypothesis. J. Biomech. Eng. 131(4), 044503–1–6 (2009)CrossRefGoogle Scholar
  96. 96.
    Chang, H.S., Nakagawa, H.: Hypothesis on the pathophysiology of syringomyelia based on simulation of cerebrospinal fluid dynamics. J. Neurol. Neurosurg. Psychiatry. 74(3), 344–347 (2003)CrossRefGoogle Scholar
  97. 97.
    Bertram, C.D., Bilston, L.E., Stoodley, M.A.: Tensile radial stress in the spinal cord related to arachnoiditis or tethering: a numerical model. Med. Biol. Eng. Comput. 46(7), 701–707 (2008)CrossRefGoogle Scholar
  98. 98.
    Bertram, C.D., Heil, M.: A poroelastic fluid/structure-interaction model of cerebrospinal fluid dynamics in the cord with syringomyelia and adjacent subarachnoid-space stenosis. J. Biomech. Eng. 139(1), (2017)CrossRefGoogle Scholar
  99. 99.
    Heil, M., Bertram, C.D.: A poroelastic fluid-structure interaction model of syringomyelia. J. Fluid Mech. 809, 360–389 (2016)ADSzbMATHCrossRefGoogle Scholar
  100. 100.
    Elliott, N.S., Lockerby, D.A., Brodbelt, A.R.: A lumped-parameter model of the cerebrospinal system for investigating arterial-driven flow in posttraumatic syringomyelia. Med. Eng. Phys. 33(7), 874–882 (2011)CrossRefGoogle Scholar
  101. 101.
    Elliott, N.S.: Syrinx fluid transport: modeling pressure-wave-induced flux across the spinal pial membrane. J. Biomech. Eng. 134(3), 031006 (2012)CrossRefGoogle Scholar
  102. 102.
    Elliott, N.S.J., Lucey, A.D., Lockerby, D.A., Brodbelt, A.R.: Fluid-structure interactions in a cylindrical layered wave guide with application in the spinal column to syringomyelia. J. Fluids Struct. 70, 464–499 (2017)ADSCrossRefGoogle Scholar
  103. 103.
    Cirovic, S., Lloyd, R., Jovanovik, J., Volk, H.A., Rusbridge, C.: Computer simulation of syringomyelia in dogs. BMC Vet. Res. 14(1), 82 (2018)CrossRefGoogle Scholar
  104. 104.
    Cirovic, S.: A coaxial tube model of the cerebrospinal fluid pulse propagation in the spinal column. J. Biomech. Eng. 131(2), 021008 (2009)CrossRefGoogle Scholar
  105. 105.
    Cirovic, S., Kim, M.: A one-dimensional model of the spinal cerebrospinal-fluid compartment. J. Biomech. Eng. 134(2), 021005 (2012)CrossRefGoogle Scholar
  106. 106.
    Cheng, S., Fletcher, D., Hemley, S., Stoodley, M., Bilston, L.: Effects of fluid structure interaction in a three dimensional model of the spinal subarachnoid space. J. Biomech. 47(11), 2826–2830 (2014)CrossRefGoogle Scholar
  107. 107.
    Cheng, S., Stoodley, M.A., Wong, J., Hemley, S., Fletcher, D.F., Bilston, L.E.: The presence of arachnoiditis affects the characteristics of CSF flow in the spinal subarachnoid space: a modelling study. J. Biomech. 45(7), 1186–1191 (2012)CrossRefGoogle Scholar
  108. 108.
    Bilston, L.E., Fletcher, D.F., Stoodley, M.A.: Focal spinal arachnoiditis increases subarachnoid space pressure: a computational study. Clin. Biomech. 21(6), 579–584 (2006)CrossRefGoogle Scholar
  109. 109.
    Roldan, A., Wieben, O., Haughton, V., Osswald, T., Chesler, N.: Characterization of CSF hydrodynamics in the presence and absence of tonsillar ectopia by means of computational flow analysis. Am. J. Neuroradiol. 30(5), 941–946 (2009)CrossRefGoogle Scholar
  110. 110.
    Linge, S.O., Haughton, V., Lovgren, A.E., Mardal, K.A., Helgeland, A., Langtangen, H.P.: Effect of tonsillar herniation on cyclic CSF flow studied with computational flow analysis. Am. J. Neuroradiol. 32(8), 1474–1481 (2011)CrossRefGoogle Scholar
  111. 111.
    Martin, B.A., Kalata, W., Shaffer, N., Fischer, P., Luciano, M., Loth, F.: Hydrodynamic and longitudinal impedance analysis of cerebrospinal fluid dynamics at the craniovertebral junction in type I Chiari malformation. PLoS One. 8(10), e75335 (2013)ADSCrossRefGoogle Scholar
  112. 112.
    Shaffer, N., Martin, B.A., Rocque, B., Madura, C., Wieben, O., Iskandar, B.J., Dombrowski, S., Luciano, M., Oshinski, J.N., Loth, F.: Cerebrospinal fluid flow impedance is elevated in type I Chiari malformation. J. Biomech. Eng. 136(2), 021012 (2014)CrossRefGoogle Scholar
  113. 113.
    Pahlavian, S.H., Loth, F., Oshinski, J.N., Luciano, M.G., Martin, B.A.: Cardiac related neural tissue motion impacts cerebrospinal fluid dynamics at the cervical-medullary junction: a patient-specific moving-boundary computational fluid dynamics model of type 1 Chiari malformation. Ann. Biomed. Eng. (2015)Google Scholar
  114. 114.
    Papisov, M.I., Belov, V.V., Gannon, K.S.: Physiology of the Intrathecal bolus: the Leptomeningeal route for macromolecule and particle delivery to CNS. Mol. Pharm. 10(5), 1522–1532 (2013)CrossRefGoogle Scholar
  115. 115.
    O’Donnell, J., Ding, F., Nedergaard, M.: Distinct functional states of astrocytes during sleep and wakefulness: is norepinephrine the master regulator? Curr. Sleep Med. Rep. 1(1), 1–8 (2015)CrossRefGoogle Scholar
  116. 116.
    Patel, T., Zhou, J.B., Piepmeier, J.M., Saltzman, W.M.: Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 64(7), 701–705 (2012)CrossRefGoogle Scholar
  117. 117.
    Lu, C.T., Zhao, Y.Z., Wong, H.L., Cai, J., Peng, L., Tian, X.Q.: Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomedicine. 9, 2241–2256 (2014)CrossRefGoogle Scholar
  118. 118.
    Watanabe, Y., Kazuki, Y., Kazuki, K., Ebiki, M., Nakanishi, M., Nakamura, K., Yoshida Yamakawa, M., Hosokawa, H., Ohbayashi, T., Oshimura, M., Nakashima, K.: Use of a human artificial chromosome for delivering trophic factors in a rodent model of amyotrophic lateral sclerosis. Mol. Ther. Nucleic Acids. 4, e253 (2015)CrossRefGoogle Scholar
  119. 119.
    Deepa, P., Shahani, N., Alladi, P.A., Vijayalakshmi, K., Sathyaprabha, T.N., Nalini, A., Ravi, V., Raju, T.R.: Down regulation of trophic factors in neonatal rat spinal cord after administration of cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients. J. Neural Transm. 118(4), 531–538 (2011)CrossRefGoogle Scholar
  120. 120.
    Myers, M.R.: A numerical investigation into factors affecting anesthetic distribution during spinal anesthesia. J. Biomech. 29(2), 139–149 (1996)MathSciNetCrossRefGoogle Scholar
  121. 121.
    Kuttler, A., Dimke, T., Kern, S., Helmlinger, G., Stanski, D., Finelli, L.A.: Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs. J. Pharmacokinet. Pharmacodyn. 37(6), 629–644 (2010)CrossRefGoogle Scholar
  122. 122.
    Hsu, Y., Hettiarachchi, H.D., Zhu, D.C., Linninger, A.A.: The frequency and magnitude of cerebrospinal fluid pulsations influence intrathecal drug distribution: key factors for interpatient variability. Anesth. Analg. 115(2), 386–394 (2012)CrossRefGoogle Scholar
  123. 123.
    Haga, P.T., Pizzichelli, G., Mortensen, M., Kuchta, M., Pahlavian, S.H., Sinibaldi, E., Martin, B.A., Mardal, K.A.: A numerical investigation of intrathecal isobaric drug dispersion within the cervical subarachnoid space. PLoS One. 12(3), e0173680 (2017)CrossRefGoogle Scholar
  124. 124.
    Tangen, K.M., Leval, R., Mehta, A.I., Linninger, A.A.: Computational and in vitro experimental investigation of intrathecal drug distribution: parametric study of the effect of injection volume, cerebrospinal fluid pulsatility, and drug uptake. Anesth. Analg. 124(5), 1686–1696 (2017)CrossRefGoogle Scholar
  125. 125.
    Tangen, K.M., Hsu, Y., Zhu, D.C., Linninger, A.A.: CNS wide simulation of flow resistance and drug transport due to spinal microanatomy. J. Biomech. 48(10), 2144–2154 (2015)CrossRefGoogle Scholar
  126. 126.
    Linninger, A.A., Somayaji, M.R., Mekarski, M., Zhang, L.: Prediction of convection-enhanced drug delivery to the human brain. J. Theor. Biol. 250(1), 125–138 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    Sarntinoranont, M., Banerjee, R.K., Lonser, R.R., Morrison, P.F.: A computational model of direct interstitial infusion of macromolecules into the spinal cord. Ann. Biomed. Eng. 31(4), 448–461 (2003)CrossRefGoogle Scholar
  128. 128.
    Støverud, K.H., Darcis, M., Helmig, R., Hassanizadeh, S.M.: Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp. Porous Media. 92(1), 119–143 (2012)MathSciNetCrossRefGoogle Scholar
  129. 129.
    Tangen, K., Linninger, A., Narasimhan, N.S.: Clearance of subarachnoid hemorrhage from the central nervous system via lumbar drain - a bench-top and computational study. Cerebrovasc. Dis. 41, 202–202 (2016)Google Scholar
  130. 130.
    Tangen, K., Narasimhan, N.S., Sierzega, K., Preden, T., Alaraj, A., Linninger, A.A.: Clearance of subarachnoid hemorrhage from the cerebrospinal fluid in computational and in vitro models. Ann. Biomed. Eng. (2016)Google Scholar
  131. 131.
    Dichiro, G.: Movement of the cerebrospinal fluid in human beings. Nature. 204, 290–291 (1964)ADSCrossRefGoogle Scholar
  132. 132.
    Asgari, M., de Zelicourt, D.A., Kurtcuoglu, V.: Barrier dysfunction or drainage reduction: differentiating causes of CSF protein increase. Fluids Barriers CNS. 14(1), 14 (2017)Google Scholar
  133. 133.
    Sanchez, A.L., Martinez-Bazan, C., Gutierrez-Montes, C., Criado-Hidalgo, E., Pawlak, G., Bradley, W., Haughton, V., Lasheras, J.C.: On the bulk motion of the cerebrospinal fluid in the spinal canal. J. Fluid Mech. 841, 203–227 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    Bilston, L.E., Fletcher, D.F., Brodbelt, A.R., Stoodley, M.A.: Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: a computational model. Comput. Methods Biomech. Biomed. Engin. 6(4), 235–241 (2003)CrossRefGoogle Scholar
  135. 135.
    Lloyd, R.A., Fletcher, D.F., Clarke, E.C., Bilston, L.E.: Chiari malformation may increase perivascular cerebrospinal fluid flow into the spinal cord: a subject-specific computational modelling study. J. Biomech. 65, 185–193 (2017)CrossRefGoogle Scholar
  136. 136.
    Wang, P., Olbricht, W.L.: Fluid mechanics in the perivascular space. J. Theor. Biol. 274(1), 52–57 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  137. 137.
    Bilston, L.E., Stoodley, M.A., Fletcher, D.F.: The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development. J. Neurosurg. 112(4), 808–813 (2010)CrossRefGoogle Scholar
  138. 138.
    Schley, D., Carare-Nnadi, R., Please, C.P., Perry, V.H., Weller, R.O.: Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J. Theor. Biol. 238(4), 962–974 (2006)CrossRefGoogle Scholar
  139. 139.
    Asgari, M., de Zelicourt, D., Kurtcuoglu, V.: How astrocyte networks may contribute to cerebral metabolite clearance. Sci. Rep. 5, (2015)Google Scholar
  140. 140.
    Sharp, M.K., Diem, A.K., Weller, R.O., Carare, R.O.: Peristalsis with oscillating flow resistance: a mechanism for periarterial clearance of amyloid beta from the brain. Ann. Biomed. Eng. 44(5), 1553–1565 (2016)CrossRefGoogle Scholar
  141. 141.
    Asgari, M., de Zelicourt, D., Kurtcuoglu, V.: Glymphatic solute transport does not require bulk flow. Sci. Rep. 6, (2016)Google Scholar
  142. 142.
    Rey, J., Sarntinoranont, M.: Pulsatile flow drivers in brain parenchyma and perivascular spaces: a resistance network model study. Fluids Barriers CNS. 15, (2018)Google Scholar
  143. 143.
    Diem, A.K., Sharp, M.M., Gatherer, M., Bressloff, N.W., Carare, R.O., Richardson, G.: Arterial pulsations cannot drive intramural periarterial drainage: significance for a beta drainage. Front. Neurosci. 11, (2017)Google Scholar
  144. 144.
    Jin, B.J., Smith, A.J., Verkman, A.S.: Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J. Gen. Physiol. 148(6), 489–501 (2016)CrossRefGoogle Scholar
  145. 145.
    Coloma, M., Schaffer, J.D., Carare, R.O., Chiarot, P.R., Huang, P.: Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain. J. Math. Biol. 73(2), 469–490 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    Holter, K.E., Kehlet, B., Devor, A., Sejnowski, T.J., Dale, A.M., Omholt, S.W., Ottersen, O.P., Nagelhus, E.A., Mardal, K.A., Pettersen, K.H.: Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl. Acad. Sci. U. S. A. 114(37), 9894–9899 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vartan Kurtcuoglu
    • 1
    Email author
  • Kartik Jain
    • 1
  • Bryn A. Martin
    • 2
  1. 1.University of Zurich, Institute of PhysiologyZurichSwitzerland
  2. 2.Department of Biological EngineeringUniversity of IdahoMoscowUSA

Personalised recommendations