Advertisement

Experimental Degradation Study of PLGA–CaCO\(_\mathrm{3}\) Nanocomposites

  • Ismael Moreno-GomezEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents the study of the degradation of nanocomposites made of poly(D,L-lactide-co-glycolide) and calcium carbonate. The first section of the chapter describes the materials and methods employed in this work. The second section includes the characterisation of the raw materials followed by the characterisation of the undegraded and degraded composites in the third and fourth sections, respectively. The discussion of the results is reported in the fifth section and lastly, the conclusions in the sixth and final section.

References

  1. 1.
    Tsunoda, M. (2003). Degradation of poly(DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers-effect of size and shape of the fillers. Dental Materials Journal, 22(3), 371–382.CrossRefGoogle Scholar
  2. 2.
    Ara, M., Watanabe, M., & Imai, Y. (2002). Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials, 23(12), 2479–2483.CrossRefGoogle Scholar
  3. 3.
    Agrawal, C. M., & Athanasiou, K. A. (1997). Technique to control pH in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research, 38(2), 105–114.CrossRefGoogle Scholar
  4. 4.
    Cotton, N. J., Egan, M. J., & Brunelle, J. E. (2008). Composites of poly(DL-lactide-co-glycolide) and calcium carbonate: In vitro evaluation for use in orthopedic applications. Journal of Biomedical Materials Research Part A, 85(1), 195–205.CrossRefGoogle Scholar
  5. 5.
    Yang, Z., Thian, E., Best, S., & Cameron, R. (2007). A novel way of dispersing fine ceramic particles in PLGA matrix. Key engineering materials (Vol. 330, pp. 511–514). Stafa-Zuerich: Trans Tech Publications.Google Scholar
  6. 6.
    Quorum EmiTech (1999). Instruction manual for EmiTech K550 sputter coater.Google Scholar
  7. 7.
    Micromeritics (1996). Instruction manual for AccuPyc 1330 pycnometer.Google Scholar
  8. 8.
    Graf, D. (1961). Crystallographic tables for the rhombohedral carbonates. American Mineralogist, 46(11–2), 1283–1316.Google Scholar
  9. 9.
    De Villiers, J. P. R. (1967). The crystal structures of aragonite, strontianite, and witherite. Ph.D. thesis, University of Illinois at Urbana-Champaign.Google Scholar
  10. 10.
    Kamhi, S. R. (1963). On the structure of vaterite, CaCO\(_ {\rm 3}\). Acta Crystallographica, 16(8), 770–772.CrossRefGoogle Scholar
  11. 11.
    Mindat Online Database (2016b). Calcite. Retrieved September 1, 2016, from http://www.mindat.org/min-859.html.
  12. 12.
    Barrett, C. E., & Cameron, R. E. (2014). X-ray microtomographic analysis of \(\alpha \)-tricalcium phosphate-poly(lactic-co-glycolic) acid nanocomposite degradation. Polymer, 55(16), 4041–4049.CrossRefGoogle Scholar
  13. 13.
    Barrett, C. E. (2013). The degradation behaviour of tricalcium phosphate - poly(lactide-co-glycolide) nanocomposites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  14. 14.
    Wilberforce, S. I., Best, S. M., & Cameron, R. E. (2010). A dynamic mechanical thermal analysis study of the viscoelastic properties and glass transition temperature behaviour of bioresorbable polymer matrix nanocomposites. Journal of Materials Science: Materials in Medicine, 21(12), 3085–3093.Google Scholar
  15. 15.
    Wilberforce, S. I., Finlayson, C. E., Best, S. M., & Cameron, R. E. (2011). The influence of the compounding process and testing conditions on the compressive mechanical properties of poly(D, L-lactide-co-glycolide)/\(\alpha \)-tricalcium phosphate nanocomposites. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1081–1089.CrossRefGoogle Scholar
  16. 16.
    Bennett, S. M. (2012). Degradation mechanisms of PLGA/\(\alpha \)-TCP composites for orthopaedic applications. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  17. 17.
    Li, S., Garreau, H., & Vert, M. (1990a). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media. Part 1: Poly(DL-lactic acid). Journal of Materials Science: Materials in Medicine, 1, 123–130.Google Scholar
  18. 18.
    Li, S., Garreau, H., & Vert, M. (1990b). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media. Part 2: Degradation of lactide-glycolide copolymers: PLA37.5GA25 and PLA75GA25. Journal of Materials Science: Materials in Medicine, 1(3), 131–139.Google Scholar
  19. 19.
    Grizzi, I., Garreau, H., Li, S., & Vert, M. (1995). Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials, 16(4), 305–311.CrossRefGoogle Scholar
  20. 20.
    Yang, Z., Best, S. M., & Cameron, R. E. (2009). The influence of \(\alpha \)-tricalcium phosphate nanoparticles and microparticles on the degradation of poly(D, L-lactide-co-glycolide). Advanced Materials, 21(38–39), 3900–3904.CrossRefGoogle Scholar
  21. 21.
    Yang, Z. (2009). Development and characterisation of bioactive, bioresorbable \(\alpha \)-tricalcium phosphate/poly(D,L-lactide-co-glycolide) nanocomposites for bone substitution and fixation. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  22. 22.
    Ehrenfried, L. M., Patel, M. H., & Cameron, R. E. (2008). The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA). Journal of Materials Science: Materials in Medicine, 19(1), 459–466.Google Scholar
  23. 23.
    Naik, A., Best, S. M., & Cameron, R. E. (2015). The influence of silanisation on the mechanical and degradation behaviour of PLGA/HA composites. Materials Science and Engineering: C, 48, 642–650.CrossRefGoogle Scholar
  24. 24.
    Naik, A., Shepherd, D. V., Shepherd, J. H., Best, S. M., & Cameron, R. E. (2017). The effect of the type of HA on the degradation of PLGA/HA composites. Materials Science and Engineering: C, 70, 824–831.CrossRefGoogle Scholar
  25. 25.
    Naik, A. (2012). Effect of calcination and silanisation on the degradation of poly(DL Lactic-co-glycolic acid)-hydroxyapatite composites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  26. 26.
    Ege, D. (2012). Mechanical and degradation properties of calcium phosphate/biodegradable polymer composites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  27. 27.
    Schliecker, G., Schmidt, C., Fuchs, S., Wombacher, R., & Kissel, T. (2003). Hydrolytic degradation of poly(lactide-co-glycolide) films: Effect of oligomers on degradation rate and crystallinity. International Journal of Pharmaceutics, 266(1–2), 39–49.CrossRefGoogle Scholar
  28. 28.
    Vey, E., Roger, C., Meehan, L., Booth, J., Claybourn, M., Miller, A. F., et al. (2008). Degradation mechanism of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polymer Degradation and Stability, 93(10), 1869–1876.CrossRefGoogle Scholar
  29. 29.
    Fox, T. G, Jr., & Flory, P. J. (1950). Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. Journal of Applied Physics, 21(6), 581–591.CrossRefGoogle Scholar
  30. 30.
    Alexis, F., Venkatraman, S., Kumar Rath, S., & Gan, L.-H. (2006). Some insight into hydrolytic scission mechanisms in bioerodible polyesters. Journal of Applied Polymer Science, 102(4), 3111–3117.CrossRefGoogle Scholar
  31. 31.
    Hakkarainen, M., Albertsson, A.-C., & Karlsson, S. (1996). Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo-and copolymers of PLA and PGA. Polymer Degradation and Stability, 52(3), 283–291.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations