Advertisement

Conceptual Design and Concept Development of Compressed Biogas Transport System Using CAD/CAE

  • Marek MysiorEmail author
  • Sebastian Koziołek
  • Bartosz Pryda
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Currently, the demand on energy is rocketing. This makes it necessary to use alternative sources of energy like biogas to satisfy our future needs. Transport of gaseous fuel in compressed state is widely known, although there is very little amount of knowledge on how to design systems dedicated to raw biogas transport under pressure. The aim of this study was to define modelling possibilities for raw biogas using NG models and to apply CAD/CAE into design process of Mobile Biogas Station. For conceptual design, functional modelling using hypothesis analysis was used and contradiction analysis using TRIZ. Detailed design process involved CAD 3D modelling and FEM analysis and design optimization. As a result, feasible design of Mobile Biogas Station was created that has modular structure and allows for ease of manufacturing having significant volume for biogas to be transported.

Keywords

CNG Biogas Compression Storage 

Notes

Acknowledgements

The article was developed as part of project No LIDER/034/645/L-4/12/NCBR/2013 funded by the National Centre for Research and Development.

References

  1. 1.
    Arciszewski T (2016) Inventive engineering: knowledge and skills for creative engineers. CRC PressGoogle Scholar
  2. 2.
    Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction (2nd ed.). WileyGoogle Scholar
  3. 3.
    Dietrich M, Kocańda S, Korytkowski B, Zimowski W, Stupiński J, Szopa T (1999) Podstawy konstrukcji maszyn. Wydawnictwo WNT, Warszawa in polishGoogle Scholar
  4. 4.
    Gadd K (2011) TRIZ for engineers: enabling inventive problem solving. WileyGoogle Scholar
  5. 5.
    Hovland J (2017) Compression of raw biogas. PorsgrunnGoogle Scholar
  6. 6.
    Jalihal SA, Reddy TS (2006) CNG: An alternative fuel for public transport. J Sci Ind Res 65(5):426–431Google Scholar
  7. 7.
    Koziolek S, Bialowiec A, Mysior M, Slupiski M, Ptak M, Derlukiewicz D (2017) Rozproszone systemy dystrybucji biogazu. Badania, projektowanie i rozwoj. Oficyna Wydawnicza Politechniki Wrocławskiej in polishGoogle Scholar
  8. 8.
    Łach M (2016). Dokładność wyznaczania współczynnika ściśliwości gazu z podwyższoną zawartością wodoru – porównanie metod obliczeniowych. Nafta-Gaz 72(5):329–338.  https://doi.org/10.18668/NG.2016.05.04. (in polish)
  9. 9.
    Skorek J, Cebula J, Latocha L, Kalina J (2003) Pozyskiwanie i energetyczne wykorzystanie biogazu z biogazowni rolniczych. Gospodarka Paliwami I Energia 12:15–19 (in polish)Google Scholar
  10. 10.
    Varga L, Nagy A, Kovacs A (1995) Design of CNG tank made of aluminium and reinforced plastic. Composites 26(6):457–463Google Scholar
  11. 11.
    Yang S (2017) Fundamentals of petrophysics. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-662-53529-5

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marek Mysior
    • 1
    Email author
  • Sebastian Koziołek
    • 1
  • Bartosz Pryda
    • 1
  1. 1.Department of Machine Design and ResearchWroclaw University of Science and TechnologyWroclawPoland

Personalised recommendations