• Yongduan Song
  • Yujuan Wang
Part of the Communications and Control Engineering book series (CCE)


This chapter introduces the cooperative control of multi-agent systems (MASs) and overviews recent research results in distributed cooperative control of networked MAS. The recent research results in distributed cooperative control of MAS are roughly categorized as leaderless consensus, leader–follower consensus, distributed formation control, and distributed containment control.


  1. 1.
    Ren, W., Beard, R., Atkins, E.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27(2), 71–82 (2007)CrossRefGoogle Scholar
  2. 2.
    Wang, W., Slotine, J.: A theoretical study of different leader roles in networks. IEEE Trans. Autom. Control 51(7), 1156–1161 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ren, W., Moore, K., Chen, Y.: High-order and model reference consensus algorithms in cooperative control of multivehicle systems. ASME J. Dyn. Syst. Meas. Control 129(5), 678–688 (2007)CrossRefGoogle Scholar
  4. 4.
    Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44(3), 846–850 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Wang, X., Chen, G.: Pinning control of scale-free dynamical networks. Physica A 310(3–4), 521–531 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kim, Y., Mesbahi, M.: On maximizing the second smallest eigen-value of a state-dependent graph laplacian. IEEE Trans. Autom. Control 51(1), 116–120 (2006)zbMATHCrossRefGoogle Scholar
  8. 8.
    Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomus systems. SIAM J. Control Optim. 38(3), 751–766 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ren, W.: Collective motion from consensus with cartesian coordinate coupling. IEEE Trans. Autom. Control 54(6), 1330–1335 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Das, A., Lewis, F.L.: Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica 46(12), 2014–2021 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Fax, J.A., Murry, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 49(9), 1465–1476 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lafferriere, G., Williams, A., Caughman, J., Veerman, J.J.P.: Decentralized control of vehicle formations. Syst. Control Lett. 54(9), 899–910 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ma, C.Q., Zhang, J.F.: On formability of linear continuous-time multi-agent systems. J. Syst. Sci. Complex. 25(1), 13–29 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Vicsek, T., Czirok, A., Jacob, E.B., Cohen, I., Schochet, O.: Novel type of phase transitions in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27(2), 71–82 (2007)CrossRefGoogle Scholar
  21. 21.
    Corts, J.: Distributed algorithms for reaching consensus on general functions. Automatica 44(3), 726–737 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ren, W., Atkins, E.M.: Distributed multi-vehicle coordinated control via local information exchange. Int. J. Robust Nonlinear Control 17(10–11), 1002–1033 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Ren, W.: On consensus algorithms for double-integrator dynamics. IEEE Trans. Autom. Control 53(6), 1503–1509 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. IEEE Trans. Autom. Control 46(6), 1089–1095 (2010)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Abdessameud, A., Tayebi, A.: On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints. Syst. Control Lett. 59(12), 812–821 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Wang, J.H., Cheng, D.Z.: Consensus of multi-agent systems with higher order dynamics. In: Proceedings of 26th Chinese Control Conference, pp. 76–765 (2007)Google Scholar
  27. 27.
    Jiang, F.C., Wang, L., Xie, G.M.: Consensus of high-order dynamic multi-agent systems with switching topology and time-varying delays. J. Control Theory Appl. 8(1), 52–60 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Xi, J.X., Cai, N., Zhong, Y.S.: Consensus problems for high-order linear time-invariant swarm systems. Physica A 389(24), 5619–5627 (2010)CrossRefGoogle Scholar
  29. 29.
    Dong, X.W., Xi, J.X., Shi, Z.Y., Zhong, Y.S.: Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties, time-varying delays and external disturbances. Int. J. Syst. Sci. 44(10), 1843–1856 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Yu, W., Chen, G., Cao, M., et al.: Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Trans. Syst. Man Cybern. 40(3), 881–891 (2010)CrossRefGoogle Scholar
  31. 31.
    Wang, Y.J., Song, Y.D., Lewis, F.L.: Robust adaptive fault-tolerant control of multi-agent systems with uncertain non-identical dynamics and undetectable actuation failures. IEEE Trans. Ind. Electron. 62(6), 3978–3988 (2015)Google Scholar
  32. 32.
    Qin, J.H., Gao, H.J., Zheng, W.X.: On average consensus in directed networks of agents with switching topology and time delay. Int. J. Syst. Sci. 42(12), 1947–1956 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Tian, Y.P., Liu, C.L.: Consensus of multi-agent systems with diverse input and communication delays. IEEE Trans. Autom. Control 53(9), 2122–2128 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Wu, Y.J., Wang, L.: Average consensus of continuous-time multi-agent systems with quantized communication. Int. J. Robust Nonlinear Control 24(18), 334–3371 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Shang, Y.L.: Average consensus in multi-agent systems with uncertain topologies and multiple time-varying delays. Linear Algebr. Appl. 459, 411–429 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Murray, R.M.: Recent research in cooperative control of multi-vehicle systems. J. Dyn. Syst. Meas. Control 129(5), 571–583 (2007)CrossRefGoogle Scholar
  37. 37.
    Cao, Y.C., Yu, W.W., Ren, W., Chen, G.R.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Ind. Inf. 9(1), 427–438 (2013)CrossRefGoogle Scholar
  38. 38.
    Ren, W.: Multi-vehicle consensus with a time-varying reference state. Syst. Control Lett. 56(7–8), 474–483 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Qin, J., Zheng, W.X., Gao, H.: Consensus of multiple second-order vehicles with a time-varying reference signal under directed topology. Automatica 47(9), 1983–1991 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Cao, Y.C., Ren, W., Li, Y.: Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication. Automatica 45(5), 474–483 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Gu, D.B., Wang, Z.Y.: Leader-follower flocking: algorithms and experiments. IEEE Trans. Control Syst. Tech. 17(5), 1211–1219 (2009)CrossRefGoogle Scholar
  42. 42.
    Kokiopoulou, E., Frossard, P.: Polynomial filtering for fast convergence in distributed consensus. IEEE Trans. Signal Process. 57(1), 342–354 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Wu, Z.H., Peng, L., Xie, L.B., et al.: Stochastic bounded consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled-data with small sampling delay. Physica A 392(4), 918–928 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Qi, B., Lou, K., Miao, S., et al.: Second-order consensus of leader-following multi-agent systems with jointly connected topologies and time-varying delays. Arabian J. Sci. Eng. 39(2), 143–1440 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Zhang, X.F., Liu, L., Feng, G.: Leader-follower consensus of time-varying nonlinear multi-agent systems. Automatica 52, 8–14 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Ni, W., Cheng, D.Z.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 59(3–4), 209–217 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Cao, Y., Ren, W.: Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Autom. Control 57(1), 33–48 (2011)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Wang, Y.J., Song, Y.D., Gao, H., Lewis, F.L.: Distributed fault-tolerant control of virtuallyand physically interconnected systems with application to high-speed trains undertraction/braking failures. IEEE Trans. Intell. Transp. Syst. 17(2), 535–545 (2016)CrossRefGoogle Scholar
  50. 50.
    Cao, Y., Ren, W.: Containment control with multiple stationary or dynamic leaders under a directed interaction graph. In: CDC 2009, Shanghai, China, pp. 3014–3019 (2009)Google Scholar
  51. 51.
    Cao, Y., Stuart, D., Ren, W., et al.: Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments. IEEE Trans. Control Syst. Technol. 19(4), 929–938 (2011)CrossRefGoogle Scholar
  52. 52.
    Mei, J., Ren, W., Ma, G.: Distributed adaptive coordination for multiple Lagrangian systems under a directed graph without using neighbors velocity information. Automatica 49(6), 1723–1731 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Li, Z., Ren, W., Liu, X., et al.: Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int. J. Robust Nonlinear Control 23(5), 534–547 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Ji, M., Ferrari-Trecate, G., Egerstedt, M., Buffa, A.: Containment control in mobile networks. IEEE Trans. Autom. Control 53(8), 1972–1975 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Meng, Z.Y., Ren, W., You, Z.: Distributed finite-time attitude containment control for multiple rigid bodies. Automatica 46(12), 2092–2099 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Notarstefano, G., Egerstedt, M., Haque, M.: Containment in leader-follower networks with switching communication topologies. Automatica 47(5), 1035–1040 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Cao, Y.C., Ren, W., Egerstedt, M.: Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks. Automatica 48(8), 1586–1597 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Liu, H.Y., Xie, G.M., Wang, L.: Necessary and sufficient conditions for containment control of networked multi-agent systems. Automatica 48(7), 1415–1422 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Lou, Y.C., Hong, Y.G.: Target containment control of multi-agent systems with random switching interconnection topologies. Automatica 48(5), 879–885 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Dong, X.W., Xi, J.X., Lu, G., Zhong, Y.S.: Containment analysis and design for high-order linear time-invariant singular swarm systems with time delays. Int. J. Robust Nonlinear Control 24(7), 1189–1204 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Liu, H.Y., Xie, G.M., Wang, L.: Containment of linear multi-agent systems under general interaction topologies. Syst. Control Lett. 61(4), 528–534 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Olfati-Saber, R.: Ultrafast consensus in small-world networks. In: ACC 2005, Portland, OR, USA, pp. 2374–2378 (2005)Google Scholar
  63. 63.
    Nosrati, S., Shafiee, M.: Time-delay dependent stability robustness of small-world protocols for fast distributed consensus seeking. In: The 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops (2007)Google Scholar
  64. 64.
    Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53(1), 65–78 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Kira, Y., Mesbahi, M.: On maximizing the second smallest eigenvalue of a state-dependent graph laplacian. IEEE Trans. Autom. Control 51(1), 116–120 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Jin, Z.P., Murray, R.M.: Multi-hop relay protocols for fast consensus seeking. In: CDC 2006, CA, USA, pp. 1001–1006 (2006)Google Scholar
  67. 67.
    Yang, W., Wang, X.F.: Consensus filters on small world networks. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, pp. 1217–1221 (2006)Google Scholar
  68. 68.
    Weiss, L., Infante, E.F.: On the stability of systems defined over a finite time interval. Proc. Natl. Acad. Sci. U.S.A. 1965, 44–48 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Weiss, L., Infante, E.F.: Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 12(1), 54–59 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Song, Y.D., Wang, Y.J., Holloway, J., Krstic, M.: Time-varying feedback for finite-time robust regulation of normal-form nonlinear systems. In: The 55th Conference on Decision and Control (CDC), pp. 3837–3842 (2016)Google Scholar
  71. 71.
    Song, Y.D., Wang, Y.J., Holloway, J., Krstic, M.: Time-Varying feedback for robust regulation of normal-form nonlinear systems in prescribed finite time. Automatica 2017(83), 243–251 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Corts, J.: Finite-time convergent gradient flows with applications to network consensus. Automatica 42(11), 1993–2000 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Chen, G., Lewis, F.L., Xie, L.H.: Finite-time distributed consensus via binary control protocols. Automatica 47(9), 1962–1968 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Li, C.Y., Qu, Z.H.: Distributed finite-time consensus of nonlinear systems under switching topologies. Automatica 50(6), 162–1631 (2014)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Zhang, Y., Yang, Y., Zhao, Y., Wen, G.: Distributed finite-time tracking control for nonlinear multi-agent systems subject to external disturbances. Int. J. Control 86(1), 29–40 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Franceschelli, M., Guia, A., Pisano, A., Usai, E.: Finite-time consensus for switching network topologies. Nonlinear Anal. Hybrid Syst. 10, 83–93 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Wen, G., Rahmani, A., Yu, Y.: Consensus tracking for multi-agent systems with nonlinear dynamics under fixed communication topologies. In: Proceeding of the World Congress on Engineering and Computer Science, San Francisco, USA (2011)Google Scholar
  78. 78.
    Meng, Z., Lin, Z.: On distributed finite-time observer design and finite-time coordinated tracking of multiple double integrator systems via local interactions. Int. J. Robust Nonlinear Control 24(16), 2473–2489 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Fu, J., Wang, J.: Observer-based finite-time coordinated tracking for high-order integrator systems with matched uncertainties under directed communication graphs. In: Proceeding of the 11th IEEE International Conference on Control and Automation, pp. 880–885 (2014)Google Scholar
  80. 80.
    Emelyanov, S.V., Taranm, V.A.: On a class of variable structure control systems. In: Proceeding of USSR Academy of Sciences, Energy and Automation, Moskov, p. 3 (1962)Google Scholar
  81. 81.
    Yu, X., Ledwich, G., Man, Z.: Terminal sliding mode control of linear systems. IEEE Trans. Autom. Control (1994)Google Scholar
  82. 82.
    Yu, X., Man, Z.: Model reference adaptive control systems with terminal sliding modes. Int. J. Control 64(6), 1165–1176 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Xu, X., Wang, J.: Finite-time consensus tracking for second-order multiagent systems. Asian J. Control 15(4), 1246–1250 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Khoo, S., Xie, L., Man, Z.: Integral terminal sliding mode cooperative control of multi-robot networks. In: IEEE/ASME International Conference Advanced Intelligent Mechatronics, Singapore, pp. 969–973 (2009)Google Scholar
  85. 85.
    Khoo, S., Xie, L., Man, Z.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans. Mechatron. 14(2), 219–228 (2009)CrossRefGoogle Scholar
  86. 86.
    Zou, A., Kumar, K.D.: Distributed attitude coordination control for spacecraft formation flying. IEEE Trans. Aerosp. Electron. Syst. 48(2), 1329–1346 (2012)CrossRefGoogle Scholar
  87. 87.
    Chen, G., Yue, Y.L., Song, Y.D.: Finite-time cooperative-tracking control for networked Euler-Lagrange systems. IET Control Theory Appl. 7(11), 1487–1497 (2013)MathSciNetCrossRefGoogle Scholar
  88. 88.
    Ghasemi, M., Nersesov, S.G.: Finite-time coordination in multiagent systems using sliding mode control approach. Automatica 50(4), 1209–1216 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    He, X., Wang, Q., Yu, W.: Finite-time distributed cooperative attitude tracking control for multiple rigid spacecraft. Appl. Math. Comput. 256, 724–734 (2015)MathSciNetzbMATHGoogle Scholar
  90. 90.
    Cao, Y., Ren, W., Meng, Z.: Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Syst. Control Lett. 59(9), 522–529 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Kamble, U.B., Chandle, J.O., Lahire, V.S., Langde, R.D.: Second order twisting sliding mode control of multi-agent network with input disturbance. In: Proceeding of the 2013 4th International Conference on Computing, Communications and Networking Technologies (2013)Google Scholar
  92. 92.
    Li, H., Liao, X., Chen, G.: Leader-following finite-time consensus in second-order multi-agent networks with nonlinear dynamics. Int. J. Control Autom. Syst. 11(2), 422–426 (2013)CrossRefGoogle Scholar
  93. 93.
    Zhao, L., Hua, C.: Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dyn. 75(1–2), 311–318 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Yang, Z., Shibuya, Y., Qin, P.: Distributed robust control for synchronized tracking of networked Euler-Lagrange systems. Int. J. Syst. Sci. 46(4), 720–732 (2015)zbMATHCrossRefGoogle Scholar
  95. 95.
    Haimo, V.T.: Finite time controllers. SIAM J. Contr. Optim. 24, 760–770 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotional double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)zbMATHCrossRefGoogle Scholar
  97. 97.
    Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Xiao, F., Wang, L., Chen, J., et al.: Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Xiao, F., Wang, L., Chen, T.: Finite-time consensus in networks of integrator-like dynamic agents with directional link failure. IEEE Trans. Autom. Control 59(3), 756–762 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Cao, Y., Ren, W.: Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics. Automatica 50(10), 2648–2656 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Zuo, Z., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 87(2), 363–370 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Zuo, Z., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 47(6), 1366–1375 (2016)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Bhat, S.P., Bernstein, D.S.: Finite time stability of homogeneous systems. In: In Proceedings in American Control Conference, pp. 2513–2514 (1997)Google Scholar
  104. 104.
    Hong, Y.G., Huang, J., Xu, Y.S.: On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 46(2), 305–309 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Hong, Y.G.: Finite-time stabilization and stabilizability of a class of controllable systems. Syst. Control Lett. 46, 231–236 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Hong, Y.G., Jiang, Z.P.: Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans. Autom. Control 51(12), 1950–1956 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Hong, Y.G., Wang, J., Cheng, D.Z.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Autom. Control 51(5), 858–862 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Hermes, H.: Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. In: Elaydi, S. (ed.) Differential Equations, Stability and Control, pp. 249–260. Marcel Dekker, New York (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Syst. Control Lett. 19(4), 467–473 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Hui, Q., Haddad, W.M., Bhat, S.P.: Finite-time semistability and consensus for nonlinear dynamical networks. IEEE Trans. Autom. Control 53(8), 1887–1990 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Du, H., He, Y., Cheng, Y.: Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control. IEEE Trans. Circuits Syst. I 61(6), 1778–1788 (2014)CrossRefGoogle Scholar
  112. 112.
    Zhang, Y., Yang, Y.: Finite-time consensus of second-order leader-following multi-agent systems without velocity measurements. Phys. Lett. A 337(3–4), 243–249 (2013)zbMATHCrossRefGoogle Scholar
  113. 113.
    Guan, Z., Sun, F., Wang, Y., Li, T.: Finite-time consensus for leader-following second-order multi-agent networks. IEEE Trans. Circuits Syst. I 59(11), 2646–2654 (2012)MathSciNetCrossRefGoogle Scholar
  114. 114.
    Lu, X., Lu, R., Chen, S., Lu, J.: Finite-time distributed tracking control for multi-agent systems with a virtual leader. IEEE Trans. Circuits Syst. I 60(2), 352–362 (2013)MathSciNetCrossRefGoogle Scholar
  115. 115.
    Zhao, Y., Duan, Z., Wen, G.: Distributed finite-time tracking of multiple Euler-Lagrange systems without velocity measurements. Int. J. Robust Nonlinear Control 25(11), 1688–1703 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Li, S., Wang, X.: Finite-time consensus and collision avoidance control algorithms for multiple AUVs. Automatica 49(11), 3359–3367 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 117.
    Lu, X., Chen, S., Lu, J.: Finite-time tracking for double-integrator multi-agent systems with bounded control input. IET Control Theory Appl. 7(11), 1562–1573 (2013)MathSciNetCrossRefGoogle Scholar
  118. 118.
    Zhang, B., Jia, Y., Matsno, F.: Finite-time observers for multi-agent systems without velocity measurements and with input saturations. Syst. Control Lett. 68, 86–94 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Yu, H., Shen, Y., Xia, X.: Adaptive finite-time consensus in multi-agent networks. Syst. Control Lett. 62(10), 880–889 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Caron, J.M.: Adding an integrator for the stabilization problem. Syst. Control Lett. 17, 89–104 (1991)MathSciNetCrossRefGoogle Scholar
  121. 121.
    Lin, W., Qian, C.: Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Syst. Control Lett. 39(5), 339–351 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Lin, W., Qian, C.: Adaptive control of nonlinearly paramterized systems: the smooth feedback case. IEEE Trans. Autom. Control 47(8), 1249–1266 (2002)zbMATHCrossRefGoogle Scholar
  123. 123.
    Lin, W., Qian, C.: Adaptive control of nonlinearly paramterized systems: a nonsmooth feedback framwork. IEEE Trans. Autom. Control 47(5), 757–774 (2002)zbMATHCrossRefGoogle Scholar
  124. 124.
    Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8), 1706–1712 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  125. 125.
    Du, H., Li, S., Shi, P.: Robust consensus algorithm for sencond-order multi-agent systems with external disturbances. Int. J. Control 85(12), 1913–1928 (2012)zbMATHCrossRefGoogle Scholar
  126. 126.
    Du, H., Li, S., Lin, X.: Finite-time formaiton control of multi-agent systems via dynamic output feedback. Int. J. Robust Nonlinear Control 23, 1609–1628 (2013)zbMATHCrossRefGoogle Scholar
  127. 127.
    Wang, X., Li, S., Shi, P.: Distributed finite-time containment control for double-integrator multiagent systems. IEEE Trans. Cybern. 44(9), 1518–1528 (2014)CrossRefGoogle Scholar
  128. 128.
    Huang, J., Wen, C., Wang, W., Song, Y.D.: Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems. Automatica 51, 292–301 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    Ou, M., Du, H., Li, S.: Finite-time tracking contrl of multiple noholonomic mobile robots. J. Frankl. Inst. 349, 2834–2860 (2012)zbMATHCrossRefGoogle Scholar
  130. 130.
    Wang, Y.J., Song, Y.D., Krstic, M.: Collectively rotating formation and containment deployment of multi-agent systems: a polar coordinate based finite time approach. IEEE Trans. Cybern. 47, 2161–2172 (2017)CrossRefGoogle Scholar
  131. 131.
    Wang, Y.J., Song, Y.D., Krstic, M., Wen, C.Y.: Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures. Automatica 63, 374–383 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    Wang, Y.J., Song, Y.D., Krstic, M., Wen, C.Y.: Adaptive finite time coordinated consensus for high-order multi-agent systems: adjustable fraction power feedback approach. Inf. Sci. 372, 392–406 (2016)CrossRefGoogle Scholar
  133. 133.
    Wang, Y.J., Song, Y.D., Ren, W.: Distributed adaptive finite time approach for formation-containment control of networked nonlinear systems under directed topology. IEEE Trans. Neural Netw. Learn. Syst. (2017)
  134. 134.
    Wang, Y.J., Song, Y.D.: Leader-following control of high-order multi-agent systems under directed graphs: pre-specified finite time approach. Automatica 87, 113–120 (2018)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of AutomationChongqing UniversityChongqingChina

Personalised recommendations