Advertisement

High-Performance Photocatalysts for Organic Reactions

  • R. Goutham
  • K. P. Gopinath
  • A. Ramprasath
  • B. Srikanth
  • R. Badri Narayan
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 31)

Abstract

The most important aim of modern organic chemistry is to replace the old, environmentally hazardous, expensive and less efficient processes with new, energy efficient routes of synthesis. In this regard, during the past 10 years, heterogeneous photocatalytic systems have been identified to have made it possible to perform green synthesis of a number of industrially important compounds. This is primarily attributed to its low-cost, ease of availability, simple chemical workup and eco-friendliness. In spite of the significant achievements being made in this field, major challenge pertains to the lack of selectivity. Much of fundamental knowledge pertaining to the reaction conditions such as solvent used, pH, intensity of irradiation, chosen photocatalysts and reaction conditions remain unknown for many synthesis applications. Thus this chapter will review the major achievements that have been made in this field. A review of the state of the art progresses in the use of common photocatalytic materials for the purpose of organic synthesis through four important classes of organic synthesis, namely, oxidation of alcohols, oxidative cleavage of olefins, reduction of nitro compounds, and cyclisation; carbon-hetero bond formation and alkylation will be reviewed.

Keywords

Photoredox catalysis Organic synthesis Oxidation Reduction Cyclisation Alkylation Cross-coupling reactions Surface plasmon resonance Metal-organic frameworks Photosensitisers 

References

  1. Abedi S, Morsali A (2014) Ordered mesoporous metal–organic frameworks incorporated with amorphous TiO2 as photocatalyst for selective aerobic oxidation in sunlight irradiation. ACS Catal 4:1398–1403.  https://doi.org/10.1021/cs500123d CrossRefGoogle Scholar
  2. Ahn S, Thornburg NE, Li Z et al (2016) Stable metal–organic framework-supported niobium catalysts. Inorg Chem 55:11954–11961.  https://doi.org/10.1021/acs.inorgchem.6b02103 CrossRefGoogle Scholar
  3. Akashi R, Naya S, Negishi R, Tada H (2016) Two-step excitation-driven Au–TiO2–CuO three-component plasmonic photocatalyst: selective aerobic oxidation of cyclohexylamine to cyclohexanone. J Phys Chem C 120:27989–27995.  https://doi.org/10.1021/acs.jpcc.6b08774 CrossRefGoogle Scholar
  4. Augugliaro V, Caronna T, Di Paola A et al (2010) TiO2-based photocatalysis for organic synthesis. In: Anpo M, Kamat PV (eds) Environmentally benign photocatalysts: applications of titanium oxide-based materials. Springer, New York, pp 623–645CrossRefGoogle Scholar
  5. Baar M, Blechert S (2015) Graphitic carbon nitride polymer as a recyclable photoredox catalyst for fluoroalkylation of arenes. Chem Eur J 21:526–530.  https://doi.org/10.1002/chem.201405505 CrossRefGoogle Scholar
  6. Bowman WR, Mann E, Parr J et al (2000) Bu3SnH mediated oxidative radical cyclisations: synthesis of 6H-benzo[c]chromen-6-ones  †. J Chem Soc Perkin Trans 1(62):2991–2999.  https://doi.org/10.1039/b002539i CrossRefGoogle Scholar
  7. Cano-Yelo H, Deronzier A (1984a) Photocatalysis of the Pschorr reaction by tris-(2{,}2[prime or minute]-bipyridyl)ruthenium(II) in the phenanthrene series. J Chem Soc Perkin Trans 2:1093–1098.  https://doi.org/10.1039/P29840001093 CrossRefGoogle Scholar
  8. Cano-Yelo H, Deronzier A (1984b) Photo-oxidation of some carbinols by the Ru(II) polypyridyl complex-aryl diazonium salt system. Tetrahedron Lett 25:5517–5520.  https://doi.org/10.1016/S0040-4039(01)81614-2 CrossRefGoogle Scholar
  9. Cao K, Jiang Z, Zhang X et al (2015) Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. J Membr Sci 490:72–83.  https://doi.org/10.1016/j.memsci.2015.04.050 CrossRefGoogle Scholar
  10. Carboni A, Dagousset G, Magnier E, Masson G (2014) Photoredox-induced three-component oxy-, amino-, and carbotrifluoromethylation of enecarbamates. Org Lett 16:1240–1243.  https://doi.org/10.1021/ol500374e CrossRefGoogle Scholar
  11. Chao D, Fu W-F (2014) Insight into highly selective photocatalytic oxidation of alcohols by a new trinuclear ruthenium complex with visible light. Dalton Trans 43:306–310.  https://doi.org/10.1039/C3DT52157E CrossRefGoogle Scholar
  12. Cheng J, Li W, Duan Y et al (2017) Relay visible-light photoredox catalysis: synthesis of pyrazole derivatives via formal [4 + 1] annulation and aromatization. Org Lett 19:214–217.  https://doi.org/10.1021/acs.orglett.6b03497 CrossRefGoogle Scholar
  13. Cherevatskaya M, König B (2014) Heterogeneous photocatalysts in organic synthesis. Russ Chem Rev 83:183CrossRefGoogle Scholar
  14. Cherevatskaya M, Neumann M, Füldner S et al (2012) Visible-light-promoted stereoselective alkylation by combining heterogeneous photocatalysis with organocatalysis. Angew Chem Int Ed 51:4062–4066.  https://doi.org/10.1002/anie.201108721 CrossRefGoogle Scholar
  15. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679.  https://doi.org/10.1021/j100102a038 CrossRefGoogle Scholar
  16. Cooper AI (2013) Covalent organic frameworks. Cryst Eng Comm 15:1483.  https://doi.org/10.1039/C2CE90122F CrossRefGoogle Scholar
  17. Dai J-J, Zhang W-M, Shu Y-J et al (2016) Deboronative cyanation of potassium alkyltrifluoroborates via photoredox catalysis. Chem Commun 52:6793–6796.  https://doi.org/10.1039/C6CC01530A CrossRefGoogle Scholar
  18. DePuccio DP, Landry CC (2016) Photocatalytic oxidation of methanol using porous Au/WO3 and visible light. Cat Sci Technol 6:7512–7520.  https://doi.org/10.1039/C6CY01449F CrossRefGoogle Scholar
  19. Dewar MJS, Kubba VP (1959) New heteroaromatic compounds—IV. Tetrahedron 7:213–222.  https://doi.org/10.1016/S0040-4020(01)93188-6 CrossRefGoogle Scholar
  20. Dhakshinamoorthy A, Asiri AM, García H (2016) Metal-organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed 55:5414–5445.  https://doi.org/10.1002/anie.201505581 CrossRefGoogle Scholar
  21. Dijksman A, Arends IWCE, Sheldon RA (2003) Cu(ii)-nitroxyl radicals as catalytic galactose oxidase mimics. Org Biomol Chem 1:3232–3237.  https://doi.org/10.1039/B305941C CrossRefGoogle Scholar
  22. Dong S, Feng J, Fan M et al (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5:14610–14630.  https://doi.org/10.1039/C4RA13734E CrossRefGoogle Scholar
  23. Dong C, Higashiura Y, Marui K et al (2016a) Metal-free oxidative coupling of benzylamines to imines under an oxygen atmosphere promoted using salicylic acid derivatives as organocatalysts. ACS Omega 1:799–807.  https://doi.org/10.1021/acsomega.6b00235 CrossRefGoogle Scholar
  24. Dong S, Pi Y, Li Q et al (2016b) Solar photocatalytic degradation of sulfanilamide by BiOCl/reduced graphene oxide nanocomposites: mechanism and degradation pathways. J Alloys Compd 663:1–9.  https://doi.org/10.1016/j.jallcom.2015.12.027 CrossRefGoogle Scholar
  25. Du J, Yoon TP (2009) Crossed intermolecular [2+2] cycloadditions of acyclic enones via visible light photocatalysis. J Am Chem Soc 131:14604–14605.  https://doi.org/10.1021/ja903732v CrossRefGoogle Scholar
  26. Engel DA, Dudley GB (2006) Olefination of ketones using a gold(III)-catalyzed Meyer−Schuster rearrangement. Org Lett 8:4027–4029.  https://doi.org/10.1021/ol0616743 CrossRefGoogle Scholar
  27. Friedmann D, Hakki A, Kim H et al (2016) Heterogeneous photocatalytic organic synthesis: state-of-the-art and future perspectives. Green Chem 18:5391–5411.  https://doi.org/10.1039/C6GC01582D CrossRefGoogle Scholar
  28. Frisch AC, Beller M (2005) Catalysts for cross-coupling reactions with non-activated alkyl halides. Angew Chem Int Ed 44:674–688.  https://doi.org/10.1002/anie.200461432 CrossRefGoogle Scholar
  29. Fu Y, Sun L, Yang H et al (2016) Visible-light-induced aerobic photocatalytic oxidation of aromatic alcohols to aldehydes over Ni-doped NH2-MIL-125(Ti). Appl Catal B Environ 187:212–217.  https://doi.org/10.1016/j.apcatb.2016.01.038 CrossRefGoogle Scholar
  30. Furukawa S, Ohno Y, Shishido T et al (2011) Selective amine oxidation using Nb2O5 photocatalyst and O2. ACS Catal 1:1150–1153.  https://doi.org/10.1021/cs200318n CrossRefGoogle Scholar
  31. Gil S, Marchena M, Fernández CM et al (2013) Catalytic oxidation of crude glycerol using catalysts based on Au supported on carbonaceous materials. Appl Catal A Gen 450:189–203.  https://doi.org/10.1016/j.apcata.2012.10.024 CrossRefGoogle Scholar
  32. Gopula B, Chiang C-W, Lee W-Z et al (2014) Highly enantioselective Rh-catalyzed alkenylation of imines: synthesis of chiral allylic amines via asymmetric addition of potassium alkenyltrifluoroborates to N-Tosyl imines. Org Lett 16:632–635.  https://doi.org/10.1021/ol4035897 CrossRefGoogle Scholar
  33. Goriya Y, Kim HY, Oh K (2016) O-naphthoquinone-catalyzed aerobic oxidation of amines to (Ket)imines: a modular catalyst approach. Org Lett 18:5174–5177.  https://doi.org/10.1021/acs.orglett.6b02697 CrossRefGoogle Scholar
  34. Guo S, Zhang H, Huang L et al (2013) Porous material-immobilized iodo-Bodipy as an efficient photocatalyst for photoredox catalytic organic reaction to prepare pyrrolo[2{,}1-a]isoquinoline. Chem Commun 49:8689–8691.  https://doi.org/10.1039/C3CC44486D CrossRefGoogle Scholar
  35. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663.  https://doi.org/10.1021/cr900356p CrossRefGoogle Scholar
  36. Hallett-Tapley GL, Silvero MJ, González-Béjar M et al (2011) Plasmon-mediated catalytic oxidation of sec-phenethyl and benzyl alcohols. J Phys Chem C 115:10784–10790.  https://doi.org/10.1021/jp202769a CrossRefGoogle Scholar
  37. Hari DP, Konig B (2014) Synthetic applications of eosin Y in photoredox catalysis. Chem Commun 50:6688–6699.  https://doi.org/10.1039/C4CC00751D CrossRefGoogle Scholar
  38. Hasan Z, Cho D-W, Chon C-M et al (2016) Reduction of p-nitrophenol by magnetic co-carbon composites derived from metal organic frameworks. Chem Eng J 298:183–190.  https://doi.org/10.1016/j.cej.2016.04.029 CrossRefGoogle Scholar
  39. He Z, Bae M, Wu J, Jamison TF (2014) Synthesis of highly functionalized polycyclic quinoxaline derivatives using visible-light photoredox catalysis. Angew Chem 126:14679–14683.  https://doi.org/10.1002/ange.201408522 CrossRefGoogle Scholar
  40. He Y, Shang J, Zhao Q et al (2016) A comparative study on conversion of porous and non-porous metal–organic frameworks (MOFs) into carbon-based composites for carbon dioxide capture. Polyhedron 120:30–35.  https://doi.org/10.1016/j.poly.2016.05.027 CrossRefGoogle Scholar
  41. Heitz DR, Rizwan K, Molander GA (2016) Visible-light-mediated alkenylation, allylation, and cyanation of potassium alkyltrifluoroborates with organic photoredox catalysts. J Organomet Chem 81:7308–7313.  https://doi.org/10.1021/acs.joc.6b01207 CrossRefGoogle Scholar
  42. Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257.  https://doi.org/10.1039/B907933E CrossRefGoogle Scholar
  43. Higashida S, Harada A, Kawakatsu R et al (2006) Synthesis of a coumarin compound from phenanthrene by a TiO2-photocatalyzed reaction. Chem Commun 36:2804.  https://doi.org/10.1039/b604332a CrossRefGoogle Scholar
  44. Huang H, Huang J, Liu Y-M et al (2012) Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines. Green Chem 14:930–934.  https://doi.org/10.1039/C2GC16681J CrossRefGoogle Scholar
  45. Huang S, Xu Y, Xie M et al (2015) Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf A Physicochem Eng Asp 478:71–80.  https://doi.org/10.1016/j.colsurfa.2015.03.035 CrossRefGoogle Scholar
  46. Huang Z, Gu Y, Liu X et al (2016) Metal-free atom transfer radical polymerization of methyl methacrylate with ppm level of organic photocatalyst. Macromol Rapid Commun.  https://doi.org/10.1002/marc.201600461
  47. Ikeda S, Fubuki M, Takahara YK, Matsumura M (2006) Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting. Appl Catal A Gen 300:186–190.  https://doi.org/10.1016/j.apcata.2005.11.007 CrossRefGoogle Scholar
  48. Ikeda S, Kobayashi H, Ikoma Y et al (2009) Structural effects of titanium(IV) oxide encapsulated in a hollow silica shell on photocatalytic activity for gas-phase decomposition of organics. Appl Catal A Gen 369:113–118.  https://doi.org/10.1016/j.apcata.2009.09.008 CrossRefGoogle Scholar
  49. Imamura K, Tsukahara H, Hamamichi K et al (2013) Simultaneous production of aromatic aldehydes and dihydrogen by photocatalytic dehydrogenation of liquid alcohols over metal-loaded titanium(IV) oxide under oxidant- and solvent-free conditions. Appl Catal A Gen 450:28–33.  https://doi.org/10.1016/j.apcata.2012.09.051 CrossRefGoogle Scholar
  50. Ingale N, Maddi V, Palkar M et al (2012) Synthesis and evaluation of anti-inflammatory and analgesic activity of 3-[(5-substituted-1,3,4-oxadiazol-2-yl-thio)acetyl]-2H-chromen-2-ones. Med Chem Res 21:16–26.  https://doi.org/10.1007/s00044-010-9494-z CrossRefGoogle Scholar
  51. Isaeva VI, Kustov LM (2016) Metal-organic frameworks and related materials. In: Zeolites and zeolite-like materials. Elsevier, San Diego, pp 33–109Google Scholar
  52. Ischay MA, Anzovino ME, Du J, Yoon TP (2008) Efficient visible light photocatalysis of [2+2] enone cycloadditions. J Am Chem Soc 130:12886–12887.  https://doi.org/10.1021/ja805387f CrossRefGoogle Scholar
  53. Ishiyama T, Takagi J, Yonekawa Y et al (2003) Iridium-catalyzed direct borylation of five-membered heteroarenes by Bis(pinacolato)diboron: regioselective, stoichiometric, and room temperature reactions. Adv Synth Catal 345:1103–1106.  https://doi.org/10.1002/adsc.200303058 CrossRefGoogle Scholar
  54. Jeena V, Robinson RS (2012) Convenient photooxidation of alcohols using dye sensitised zinc oxide in combination with silver nitrate and TEMPO. Chem Commun 48:299–301.  https://doi.org/10.1039/C1CC15790F CrossRefGoogle Scholar
  55. Jiang M, Yang H, Fu H (2016) Visible-light photoredox borylation of aryl halides and subsequent aerobic oxidative hydroxylation. Org Lett 18:5248–5251.  https://doi.org/10.1021/acs.orglett.6b02553 CrossRefGoogle Scholar
  56. Joyce LA, Sherer EC, Welch CJ (2014) Imine-based chiroptical sensing for analysis of chiral amines: from method design to synthetic application. Chem Sci 5:2855–2861.  https://doi.org/10.1039/C4SC01006J CrossRefGoogle Scholar
  57. Kamat DP, Tilve SG, Kamat VP, Kirtany JK (2015) Syntheses and biological activities of chroman-2-ones. A review. Org Prep Proced Int 47:1–79.  https://doi.org/10.1080/00304948.2015.983805 CrossRefGoogle Scholar
  58. Kertalli E, Schouten JC, Nijhuis TA (2016) Direct synthesis of propylene oxide in the liquid phase under mild conditions. Appl Catal A Gen 524:200–205.  https://doi.org/10.1016/j.apcata.2016.06.021 CrossRefGoogle Scholar
  59. Königsmann M, Donati N, Stein D et al (2007) Metalloenzyme-inspired catalysis: selective oxidation of primary alcohols with an iridium–aminyl-radical complex. Angew Chem Int Ed 46:3567–3570.  https://doi.org/10.1002/anie.200605170 CrossRefGoogle Scholar
  60. Kryvoruchko A, Yurlova L, Kornilovich B (2002) Purification of water containing heavy metals by chelating-enhanced ultrafiltration. Desalination 144:243–248.  https://doi.org/10.1016/S0011-9164(02)00319-3 CrossRefGoogle Scholar
  61. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241.  https://doi.org/10.1021/jp204364a CrossRefGoogle Scholar
  62. Kumar P, Varma S, Jain SL et al (2014) A TiO2 immobilized Ru(ii) polyazine complex: a visible-light active photoredox catalyst for oxidative cyanation of tertiary amines. J Mater Chem A 2:4514.  https://doi.org/10.1039/c3ta14783e CrossRefGoogle Scholar
  63. Kumar R, Gleissner EH, Tiu EG V., Yamakoshi Y (2016a) ChemInform abstract: C 70 as a photocatalyst for oxidation of secondary benzylamines to imines. ChemInform 47.  https://doi.org/10.1002/chin.201622157
  64. Kumar R, Gleißner EH, Tiu EGV, Yamakoshi Y (2016b) C70 as a photocatalyst for oxidation of secondary benzylamines to imines. Org Lett 18:184–187.  https://doi.org/10.1021/acs.orglett.5b03194 CrossRefGoogle Scholar
  65. Lang X, Chen X, Zhao J (2014a) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486.  https://doi.org/10.1039/C3CS60188A CrossRefGoogle Scholar
  66. Lang X, Ma W, Chen C et al (2014b) Selective aerobic oxidation mediated by TiO2 photocatalysis. Acc Chem Res 47:355–363.  https://doi.org/10.1021/ar4001108 CrossRefGoogle Scholar
  67. Lee DG, Spitzer UA (1970) Aqueous dichromate oxidation of primary alcohols. J Organomet Chem 35:3589–3590.  https://doi.org/10.1021/jo00835a101 CrossRefGoogle Scholar
  68. Li X-H, Wang X, Antonietti M (2012) Solvent-free and metal-free oxidation of toluene using O2 and g-C3N4 with nanopores: nanostructure boosts the catalytic selectivity. ACS Catal 2:2082–2086.  https://doi.org/10.1021/cs300413x CrossRefGoogle Scholar
  69. Li J, Sun S, Qian C et al (2016a) The role of adsorption in photocatalytic degradation of ibuprofen under visible light irradiation by BiOBr microspheres. Chem Eng J 297:139–147.  https://doi.org/10.1016/j.cej.2016.03.145 CrossRefGoogle Scholar
  70. Li Y-H, Liu X-L, Yu Z-T et al (2016b) Osmium(ii) complexes for light-driven aerobic oxidation of amines to imines. Dalton Trans 45:12400–12408.  https://doi.org/10.1039/C6DT02331B CrossRefGoogle Scholar
  71. Li Y, Miao J, Sun X et al (2016c) Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chem Eng J 298:191–197.  https://doi.org/10.1016/j.cej.2016.03.141 CrossRefGoogle Scholar
  72. Li M, Hao Y, Cárdenas-Lizana F, Keane MA (2017a) Gold promoted imine production by selective gas phase reductive coupling of nitrobenzene and benzaldehyde. Appl Catal A Gen 531:52–59.  https://doi.org/10.1016/j.apcata.2016.11.037 CrossRefGoogle Scholar
  73. Li M, Wu S, Yang X et al (2017b) Highly efficient single atom cobalt catalyst for selective oxidation of alcohols. Appl Catal A Gen 543:61–66.  https://doi.org/10.1016/j.apcata.2017.06.018 CrossRefGoogle Scholar
  74. Liang S, Wen L, Lin S et al (2014) Monolayer HNb 3 O 8 for selective photocatalytic oxidation of benzylic alcohols with visible light response. Angew Chem 126:2995–2999.  https://doi.org/10.1002/ange.201311280 CrossRefGoogle Scholar
  75. Lin S, Ischay MA, Fry CG, Yoon TP (2011) Radical cation Diels–Alder cycloadditions by visible light photocatalysis. J Am Chem Soc 133:19350–19353.  https://doi.org/10.1021/ja2093579 CrossRefGoogle Scholar
  76. Liu Q, Zhu F-P, Jin X-L et al (2015) Visible-light-driven intermolecular [2+2] cycloadditions between coumarin-3-carboxylates and acrylamide analogs. Chem Eur J 21:10326–10329.  https://doi.org/10.1002/chem.201501176 CrossRefGoogle Scholar
  77. Long B, Ding Z, Wang X (2013) Carbon nitride for the selective oxidation of aromatic alcohols in water under visible light. ChemSusChem 6:2074–2078.  https://doi.org/10.1002/cssc.201300360 CrossRefGoogle Scholar
  78. Lu Z, Shen M, Yoon TP (2011) [3+2] cycloadditions of aryl cyclopropyl ketones by visible light photocatalysis. J Am Chem Soc 133:1162–1164.  https://doi.org/10.1021/ja107849y CrossRefGoogle Scholar
  79. Magdziarz A, Colmenares JC, Chernyayeva O et al (2016) Iron-containing Titania photocatalyst prepared by the sonophotodeposition method for the oxidation of benzyl alcohol. ChemCatChem 8:536–539.  https://doi.org/10.1002/cctc.201501250 CrossRefGoogle Scholar
  80. Maldotti A, Molinari A, Amadelli R (2002) Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chem Rev 102:3811–3836.  https://doi.org/10.1021/cr010364p CrossRefGoogle Scholar
  81. Mera AC, Contreras D, Escalona N, Mansilla HD (2016) BiOI microspheres for photocatalytic degradation of gallic acid. J Photochem Photobiol A Chem 318:71–76.  https://doi.org/10.1016/j.jphotochem.2015.12.005 CrossRefGoogle Scholar
  82. Miyake GM, Theriot JC (2014) Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light. Macromolecules 47:8255–8261.  https://doi.org/10.1021/ma502044f CrossRefGoogle Scholar
  83. Miyaura N (2008) Metal-catalyzed cross-coupling reactions of organoboron compounds with organic halides. In: Metal-catalyzed cross-coupling reactions. Wiley-VCH Verlag GmbH, Weinheim, pp 41–123Google Scholar
  84. Muthusamy S, Kumarswamyreddy N, Kesavan V, Chandrasekaran S (2016) Recent advances in aerobic oxidation with ruthenium catalysts. Tetrahedron Lett 57:5551–5559.  https://doi.org/10.1016/j.tetlet.2016.11.024 CrossRefGoogle Scholar
  85. Narayanam JMR, Stephenson CRJ (2011) Visible light photoredox catalysis: applications in organic synthesis. Chem Soc Rev 40:102–113.  https://doi.org/10.1039/B913880N CrossRefGoogle Scholar
  86. Naya S, Kimura K, Tada H (2013) One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium(IV) oxide plasmon photocatalyst. ACS Catal 3:10–13.  https://doi.org/10.1021/cs300682d CrossRefGoogle Scholar
  87. Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CRJ (2011) Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. J Am Chem Soc 133:4160–4163.  https://doi.org/10.1021/ja108560e CrossRefGoogle Scholar
  88. Nguyen JD, Reiß B, Dai C et al (2013) Batch to flow deoxygenation using visible light photoredox catalysis. Chem Commun 49:4352–4354.  https://doi.org/10.1039/C2CC37206A CrossRefGoogle Scholar
  89. Niu H, Liu S, Cai Y et al (2016) MOF derived porous carbon supported Cu/Cu2O composite as high performance non-noble catalyst. Microporous Mesoporous Mater 219:48–53.  https://doi.org/10.1016/j.micromeso.2015.07.027 CrossRefGoogle Scholar
  90. Ohtani B, Tsuru S, Nishimoto S et al (1990) Photocatalytic one-step syntheses of cyclic imino acids by aqueous semiconductor suspensions. J Organomet Chem 55:5551–5553.  https://doi.org/10.1021/jo00308a005 CrossRefGoogle Scholar
  91. Ohtani B, Iwai K, Kominami H et al (1995a) Titanium(IV) oxide photocatalyst of ultra-high activity for selective N-cyclization of an amino acid in aqueous suspensions. Chem Phys Lett 242:315–319.  https://doi.org/10.1016/0009-2614(95)00740-U CrossRefGoogle Scholar
  92. Ohtani B, Kawaguchi J, Kozawa M et al (1995b) Effect of platinum loading on the photocatalytic activity of cadmium(II) sulfide particles suspended in aqueous amino acid solutions. J Photochem Photobiol A Chem 90:75–80.  https://doi.org/10.1016/1010-6030(95)04084-S CrossRefGoogle Scholar
  93. Ohtani B, Pal B, Ikeda S (2003) Photocatalytic organic syntheses: selective cyclization of amino acids in aqueous suspensions. Catal Surv from Asia 7:165–176.  https://doi.org/10.1023/A:1025389725637 CrossRefGoogle Scholar
  94. Ohzu S, Ishizuka T, Hirai Y et al (2012) Mechanistic insight into catalytic oxidations of organic compounds by ruthenium(iv)-oxo complexes with pyridylamine ligands. Chem Sci 3:3421–3431.  https://doi.org/10.1039/C2SC21195E CrossRefGoogle Scholar
  95. Ovoshchnikov DS, Donoeva BG, Golovko VB (2015) Visible-light-driven aerobic oxidation of amines to nitriles over hydrous ruthenium oxide supported on TiO2. ACS Catal 5:34–38.  https://doi.org/10.1021/cs501186n CrossRefGoogle Scholar
  96. Patil NT, Shinde VS, Thakare MS et al (2012) Exploiting the higher alkynophilicity of Au-species: development of a highly selective fluorescent probe for gold ions. Chem Commun 48:11229–11231.  https://doi.org/10.1039/C2CC35083A CrossRefGoogle Scholar
  97. Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363.  https://doi.org/10.1021/cr300503r CrossRefGoogle Scholar
  98. Puri S, Kaur B, Parmar A, Kumar H (2009) Ultrasound-promoted greener synthesis of 2H-chromen-2-ones catalyzed by copper perchlorate in solventless media. Ultrason Sonochem 16:705–707.  https://doi.org/10.1016/j.ultsonch.2009.04.002 CrossRefGoogle Scholar
  99. Qin Y, Zhang L, Lv J et al (2015) Bioinspired organocatalytic aerobic C–H oxidation of amines with an ortho-quinone catalyst. Org Lett 17:1469–1472.  https://doi.org/10.1021/acs.orglett.5b00351 CrossRefGoogle Scholar
  100. Qiu D, Mo F, Zheng Z et al (2010) Gold(III)-catalyzed halogenation of aromatic boronates with N-halosuccinimides. Org Lett 12:5474–5477.  https://doi.org/10.1021/ol102350v CrossRefGoogle Scholar
  101. Rana S, Maddila S, Yalagala K, Jonnalagadda SB (2015) Organo functionalized graphene with Pd nanoparticles and its excellent catalytic activity for Suzuki coupling reaction. Appl Catal A Gen 505:539–547.  https://doi.org/10.1016/j.apcata.2015.07.018 CrossRefGoogle Scholar
  102. Ravelli D, Fagnoni M (2012) Dyes as visible light photoredox organocatalysts. Chem Cat Chem 4:169–171.  https://doi.org/10.1002/cctc.201100363 CrossRefGoogle Scholar
  103. Revol G, McCallum T, Morin M et al (2013) Photoredox transformations with dimeric gold complexes. Angew Chem Int Ed 52:13342–13345.  https://doi.org/10.1002/anie.201306727 CrossRefGoogle Scholar
  104. Rohini KSP, S PS (2014) Therapeutic role of coumarins and coumarin-related compounds. J Biofertilizers Biopestic 5:1–3.  https://doi.org/10.4172/2157-7544.1000130 CrossRefGoogle Scholar
  105. Romero M, Blanco J, Sánchez B et al (1999) Solar photocatalytic degradation of water and air pollutants: challenges and perspectives. Sol Energy 66:169–182.  https://doi.org/10.1016/S0038-092X(98)00120-0 CrossRefGoogle Scholar
  106. Ronad P, Dharbamalla S, Hunshal R, Maddi V (2008) Synthesis of novel substituted 7-(Benzylideneamino)-4-,ethyl-2 H -chromen-2-one derivatives as anti-inflammatory and analgesic agents. Arch Pharm (Weinheim) 341:696–700.  https://doi.org/10.1002/ardp.200800057 CrossRefGoogle Scholar
  107. Rueping M, Zhu S, Koenigs RM et al (2011) Visible-light photoredox catalyzed oxidative Strecker reaction. Chem Commun 47:12709.  https://doi.org/10.1039/c1cc15643h CrossRefGoogle Scholar
  108. Sadiq M, Saeed K, Sadiq S et al (2017) Liquid phase oxidation of cinnamyl alcohol to cinnamaldehyde using multiwall carbon nanotubes decorated with zinc-manganese oxide nanoparticles. Appl Catal A Gen 539:97–103.  https://doi.org/10.1016/j.apcata.2017.04.007 CrossRefGoogle Scholar
  109. Sahiner N, Demirci S, Sahiner M, Yilmaz S (2016) Application of superporous magnetic cationic cryogels for persistent chromate (toxic chromate and dichromate) uptake from aqueous environments. J Appl Polym Sci 133:n/a-n/a.  https://doi.org/10.1002/app.43438
  110. Sahoo B, Hopkinson MN, Glorius F (2013) Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J Am Chem Soc 135:5505–5508.  https://doi.org/10.1021/ja400311h CrossRefGoogle Scholar
  111. Samec JSM, Éll AH, Bäckvall J-E (2005) Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system. Chem Eur J 11:2327–2334.  https://doi.org/10.1002/chem.200401082 CrossRefGoogle Scholar
  112. Selvam K, Sakamoto H, Shiraishi Y, Hirai T (2015) Photocatalytic secondary amine synthesis from azobenzenes and alcohols on TiO2 loaded with Pd nanoparticles. New J Chem 39:2856–2860.  https://doi.org/10.1039/C5NJ00158G CrossRefGoogle Scholar
  113. Shaabani A, Tavasoli-Rad F, Lee DG (2005) Potassium permanganate oxidation of organic compounds. Synth Commun 35:571–580.  https://doi.org/10.1081/SCC-200049792 CrossRefGoogle Scholar
  114. Shekhawat K, Chatterjee S, Joshi B (2015) Chromium toxicity and its health hazards. Int J Adv Res 3:167–172Google Scholar
  115. Shen C, Zhao C, Xin F et al (2015a) Nitrogen-modified carbon nanostructures derived from metal-organic frameworks as high performance anodes for Li-ion batteries. Electrochim Acta 180:852–857.  https://doi.org/10.1016/j.electacta.2015.09.036 CrossRefGoogle Scholar
  116. Shen L, Liang R, Wu L (2015b) Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chin J Catal 36:2071–2088.  https://doi.org/10.1016/S1872-2067(15)60984-6 CrossRefGoogle Scholar
  117. Shimizu K, Shimura K, Tamagawa N et al (2012) Sulfur promoted Pt/SiO2 catalyzed cross-coupling of anilines and amines. Appl Catal A Gen 417–418:37–42.  https://doi.org/10.1016/j.apcata.2011.12.019 CrossRefGoogle Scholar
  118. Shiraishi Y, Sugano Y, Tanaka S, Hirai T (2010) One-pot synthesis of benzimidazoles by simultaneous photocatalytic and catalytic reactions on Pt@TiO2 nanoparticles. Angew Chem 122:1700–1704.  https://doi.org/10.1002/ange.200906573 CrossRefGoogle Scholar
  119. Skubi KL, Blum TR, Yoon TP (2016) Dual catalysis strategies in photochemical synthesis. Chem Rev 116:10035–10074.  https://doi.org/10.1021/acs.chemrev.6b00018 CrossRefGoogle Scholar
  120. Sorour MH, Hani HA, Shaalan HF, El-Sayed MMH (2016) Experimental screening of some chelating agents for calcium and magnesium removal from saline solutions. Desalin Water Treat 57:22799–22808.  https://doi.org/10.1080/19443994.2015.1111595 CrossRefGoogle Scholar
  121. Stahl AEW, Shannon S (2016) Quinones in hydrogen peroxide synthesis and catalytic aerobic oxidation reactions. In: Liquid phase aerobic oxidation catalysis: industrial applications and academic perspectives: industrial applications and academic perspectives. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  122. Su F, Mathew SC, Lipner G et al (2010) mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J Am Chem Soc 132:16299–16301.  https://doi.org/10.1021/ja102866p CrossRefGoogle Scholar
  123. Su L, Ye X, Meng S et al (2016) Effect of different solvent on the photocatalytic activity of ZnIn2S4 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation. Appl Surf Sci 384:161–174.  https://doi.org/10.1016/j.apsusc.2016.04.084 CrossRefGoogle Scholar
  124. Sun D, Ye L, Li Z (2015) Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Appl Catal B Environ 164:428–432.  https://doi.org/10.1016/j.apcatb.2014.09.054 CrossRefGoogle Scholar
  125. Suzuki K, Tang F, Kikukawa Y et al (2014) Visible-light-induced photoredox catalysis with a tetracerium-containing silicotungstate. Angew Chem Int Ed 53:5356–5360.  https://doi.org/10.1002/anie.201403215 CrossRefGoogle Scholar
  126. Tanaka A, Hashimoto K, Kominami H (2011) Selective photocatalytic oxidation of aromatic alcohols to aldehydes in an aqueous suspension of gold nanoparticles supported on cerium(iv) oxide under irradiation of green light. Chem Commun 47:10446–10448.  https://doi.org/10.1039/C1CC13801D CrossRefGoogle Scholar
  127. Tang J, Grampp G, Liu Y et al (2015) Visible light mediated cyclization of tertiary anilines with maleimides using nickel(II) oxide surface-modified titanium dioxide catalyst. J Organomet Chem 80:2724–2732.  https://doi.org/10.1021/jo502901h CrossRefGoogle Scholar
  128. Tellis JC, Kelly CB, Primer DN et al (2016) Single-electron transmetalation via photoredox/nickel dual catalysis: unlocking a new paradigm for sp 3 –sp 2 cross-coupling. Acc Chem Res 49:1429–1439.  https://doi.org/10.1021/acs.accounts.6b00214 CrossRefGoogle Scholar
  129. Tighadouini S, Radi S, Bacquet M et al (2015) Synthesis of 1-(furan-2-yl) imine functionalized silica as a chelating sorbent and its preliminary use in metal ion adsorption. Sep Sci Technol 50:710–717.  https://doi.org/10.1080/01496395.2014.959134 CrossRefGoogle Scholar
  130. Togo H, Muraki T, Yokoyama M (1995) Remote functionalization (1): synthesis of γ- and δ-lactones from aromatic carboxylic acids. Tetrahedron Lett 36:7089–7092.  https://doi.org/10.1016/0040-4039(95)01432-H CrossRefGoogle Scholar
  131. Trost BM, Weiss AH (2009) The enantioselective addition of alkyne nucleophiles to carbonyl groups. Adv Synth Catal 351:963–983.  https://doi.org/10.1002/adsc.200800776 CrossRefGoogle Scholar
  132. Tuccio SA, Drexhage KH, Reynolds GA (1973) cw laser emission from coumarin dyes in the blue and green. Opt Commun 7:248–252.  https://doi.org/10.1016/0030-4018(73)90021-7 CrossRefGoogle Scholar
  133. Tucker JW, Stephenson CRJ (2012) Shining light on photoredox catalysis: theory and synthetic applications. J Organomet Chem 77:1617–1622.  https://doi.org/10.1021/jo202538x CrossRefGoogle Scholar
  134. Tucker JW, Narayanam JMR, Krabbe SW, Stephenson CRJ (2010) Electron transfer photoredox catalysis: intramolecular radical addition to indoles and pyrroles. Org Lett 12:368–371.  https://doi.org/10.1021/ol902703k CrossRefGoogle Scholar
  135. Tucker JW, Zhang Y, Jamison TF, Stephenson CRJ (2012) Visible-light photoredox catalysis in flow. Angew Chem Int Ed 51:4144–4147.  https://doi.org/10.1002/anie.201200961 CrossRefGoogle Scholar
  136. Tyson EL, Ament MS, Yoon TP (2013) Transition metal photoredox catalysis of radical Thiol-ene reactions. J Organomet Chem 78:2046–2050.  https://doi.org/10.1021/jo3020825 CrossRefGoogle Scholar
  137. Ushakov DB, Plutschack MB, Gilmore K, Seeberger PH (2015) Factors influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen. Chem Eur J 21:6528–6534.  https://doi.org/10.1002/chem.201500121 CrossRefGoogle Scholar
  138. Verma S, Baig RBN, Nadagouda MN, Varma RS (2016) Selective oxidation of alcohols using photoactive VO@g-C3N4. ACS Sustain Chem Eng 4:1094–1098.  https://doi.org/10.1021/acssuschemeng.5b01163 CrossRefGoogle Scholar
  139. Wallentin C-J, Nguyen JD, Finkbeiner P, Stephenson CRJ (2012) Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts. J Am Chem Soc 134:8875–8884.  https://doi.org/10.1021/ja300798k CrossRefGoogle Scholar
  140. Wang P, Huang B, Dai Y, Whangbo M-H (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825.  https://doi.org/10.1039/C2CP40823F CrossRefGoogle Scholar
  141. Wang X, Cuny GD, Noël T (2013) A mild, one-pot Stadler-Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Angew Chem 125:8014–8018.  https://doi.org/10.1002/ange.201303483 CrossRefGoogle Scholar
  142. Wang H, Yuan X, Wu Y et al (2015a) Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl Catal B Environ 174–175:445–454.  https://doi.org/10.1016/j.apcatb.2015.03.037 CrossRefGoogle Scholar
  143. Wang ZJ, Garth K, Ghasimi S et al (2015b) Conjugated microporous poly(benzochalcogenadiazole)s for photocatalytic oxidative coupling of amines under visible light. Chem Sus Chem 8:3459–3464.  https://doi.org/10.1002/cssc.201500827 CrossRefGoogle Scholar
  144. Wang X, Ding S, Wang H et al (2017) Conversion of propionic acid and 3-pentanone to hydrocarbons on ZSM-5 catalysts: reaction pathway and active site. Appl Catal A Gen 545:79–89.  https://doi.org/10.1016/j.apcata.2017.07.037 CrossRefGoogle Scholar
  145. Woźnica M, Chaoui N, Taabache S, Blechert S (2014) THF: an efficient electron donor in continuous flow radical cyclization photocatalyzed by graphitic carbon nitride. Chem Eur J 20:14624–14628.  https://doi.org/10.1002/chem.201404440 CrossRefGoogle Scholar
  146. Wu Y, Yuan B, Li M et al (2015) Well-defined BiOCl colloidal ultrathin nanosheets: synthesis{,} characterization{,} and application in photocatalytic aerobic oxidation of secondary amines. Chem Sci 6:1873–1878.  https://doi.org/10.1039/C4SC03229B CrossRefGoogle Scholar
  147. Xi Y, Yi H, Lei A (2013) Synthetic applications of photoredox catalysis with visible light. Org Biomol Chem 11:2387–2403.  https://doi.org/10.1039/C3OB40137E CrossRefGoogle Scholar
  148. Xia X-D, Ren Y-L, Chen J-R et al (2015) Phototandem catalysis: efficient synthesis of 3-Ester-3-hydroxy-2-oxindoles by a visible light-induced cyclization of diazoamides through an aerobic oxidation sequence. Chem Asian J 10:124–128.  https://doi.org/10.1002/asia.201402990 CrossRefGoogle Scholar
  149. Xu J, He S, Zhang H et al (2015) Layered metal-organic framework/graphene nanoarchitectures for organic photosynthesis under visible light. J Mater Chem A 3:24261–24271.  https://doi.org/10.1039/C5TA06838J CrossRefGoogle Scholar
  150. Xu J, Shang J-K, Chen Y et al (2017) Palladium nanoparticles supported on mesoporous carbon nitride for efficiently selective oxidation of benzyl alcohol with molecular oxygen. Appl Catal A Gen 542:380–388.  https://doi.org/10.1016/j.apcata.2017.05.036 CrossRefGoogle Scholar
  151. Xuan J, Xia X-D, Zeng T-T et al (2014) Visible-light-induced formal [3+2] cycloaddition for pyrrole synthesis under metal-free conditions. Angew Chem 126:5759–5762.  https://doi.org/10.1002/ange.201400602 CrossRefGoogle Scholar
  152. Yadav AK, Yadav LDS (2017) Visible light photoredox catalysis with N-hydroxyphthalimide for [4+2] cyclization between N-methylanilines and maleimides. Tetrahedron Lett 58:552–555.  https://doi.org/10.1016/j.tetlet.2016.12.077 CrossRefGoogle Scholar
  153. Yan G, Jiang Y, Kuang C et al (2010) Nano-Fe2O3-catalyzed direct borylation of arenes. Chem Commun 46:3170–3172.  https://doi.org/10.1039/B926945B CrossRefGoogle Scholar
  154. Zani L, Bolm C (2006) Direct addition of alkynes to imines and related C[double bond{,} length as m-dash]N electrophiles: a convenient access to propargylamines. Chem Commun:4263–4275.  https://doi.org/10.1039/B607986P
  155. Zeitler K (2009) Photoredox catalysis with visible light. Angew Chem Int Ed 48:9785–9789.  https://doi.org/10.1002/anie.200904056 CrossRefGoogle Scholar
  156. Zen J-M, Liou S-L, Kumar AS, Hsia M-S (2003) An efficient and selective photocatalytic system for the oxidation of sulfides to sulfoxides. Angew Chem 115:597–599.  https://doi.org/10.1002/ange.200390134 CrossRefGoogle Scholar
  157. Zhang Y, Xu Y-J (2014) Bi2WO6: a highly chemoselective visible light photocatalyst toward aerobic oxidation of benzylic alcohols in water. RSC Adv 4:2904–2910.  https://doi.org/10.1039/C3RA46383D CrossRefGoogle Scholar
  158. Zhang M, Chen C, Ma W, Zhao J (2008) Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO 2 and TEMPO. Angew Chem Int Ed 47:9730–9733.  https://doi.org/10.1002/anie.200803630 CrossRefGoogle Scholar
  159. Zhang C, Tang C, Jiao N (2012) Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem Soc Rev 41:3464–3484.  https://doi.org/10.1039/C2CS15323H CrossRefGoogle Scholar
  160. Zhang L-S, Chen G, Wang X et al (2014a) Direct borylation of primary C□H bonds in functionalized molecules by palladium catalysis. Angew Chem Int Ed 53:3899–3903.  https://doi.org/10.1002/anie.201310000 CrossRefGoogle Scholar
  161. Zhang N, Samanta SR, Rosen BM, Percec V (2014b) Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis. Chem Rev 114:5848–5958.  https://doi.org/10.1021/cr400689s CrossRefGoogle Scholar
  162. Zhang P, Wu P, Bao S et al (2016) Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes. Chem Eng J 306:1151–1161.  https://doi.org/10.1016/j.cej.2016.08.015 CrossRefGoogle Scholar
  163. Zhao Y, Chen J-R, Xiao W-J (2016) Synthesis of hydrazide-containing chroman-2-ones and dihydroquinolin-2-ones via photocatalytic radical cascade reaction of aroylhydrozones. Org Lett 18:6304–6307.  https://doi.org/10.1021/acs.orglett.6b03174 CrossRefGoogle Scholar
  164. Zhen W, Ma J, Lu G (2016) Small-sized Ni(111) particles in metal-organic frameworks with low over-potential for visible photocatalytic hydrogen generation. Appl Catal B Environ 190:12–25.  https://doi.org/10.1016/j.apcatb.2016.02.061 CrossRefGoogle Scholar
  165. Zheng Z, Chen C, Bo A, et al (2014) Visible-light-induced selective photocatalytic oxidation of benzylamine into imine over supported Ag/AgI photocatalysts. ChemCatChem 6:n/a-n/a.  https://doi.org/10.1002/cctc.201301030
  166. Zou Y-Q, Chen J-R, Liu X-P et al (2012) Highly efficient aerobic oxidative hydroxylation of arylboronic acids: photoredox catalysis using visible light. Angew Chem 124:808–812.  https://doi.org/10.1002/ange.201107028 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • R. Goutham
    • 1
  • K. P. Gopinath
    • 1
  • A. Ramprasath
    • 1
  • B. Srikanth
    • 1
  • R. Badri Narayan
    • 1
  1. 1.Department of Chemical EngineeringSri Sivasubramaniya Nadar College of EngineeringChennaiIndia

Personalised recommendations