Advertisement

Solar Light Active Nano-photocatalysts

  • Jesty Thomas
  • K. S. Ambili
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 31)

Abstract

Environmental pollution is becoming a serious threat to the human society, and photocatalysis is recognized as an environmental benign technology to remediate organic pollutants from aqueous environment. Mainstream research related to pollutant remediation and energy production is based on heterogeneous photocatalysis, a modified advanced oxidation process. Being a green technology, it can have further applications if the vast and inexpensive solar light can be utilized in place of harmful ultraviolet rays.

This chapter focuses on some important nano-semiconductor photocatalysts like TiO2, ZnO and graphitic carbon nitride (g-C3N4 or CN) and various strategies adopted for improving their photocatalytic activity under sunlight. Different methods for improving visible light active photocatalysts including metal/non-metal doping, the addition of photosensitive materials, incorporation of other nanoparticles, composite formation with other semiconductors and formation of heterojunctions and nanohybrids are discussed. These fundamental information can serve as knowledge base in constructing next-generation photocatalysts with better properties.

Keywords

Nano-semiconductor materials Solar/visible light Photocatalysts Pollutant remediation Advanced oxidation process TiO2 ZnO graphitic carbon nitride Titanates Nano-metal sulphides 

References

  1. Ansari SA, Ansari SG, Foaud H, Cho MH (2017) New J Chem 41:9314–9320.  https://doi.org/10.1039/C6NJ04070E CrossRefGoogle Scholar
  2. Ansari SA, Ansari MO, Cho MH. Sci Rep, 6:27713.  https://doi.org/10.1038/srep27713.
  3. Athanasiou A, Mitsionis A, Vaimakis T, Pomonis P, Petrakis D, Loukatzikou L, Todorova N, Trapalis C, Ladas S (2014) Appl Surf Sci 319:143–150.  https://doi.org/10.1016/j.apsusc.2014.06.086 CrossRefGoogle Scholar
  4. Bachir S, Azuma K, Kossanyi J, Valat P, Haret JCR (1997) J Lumin 75:35–49.  https://doi.org/10.1016/S0022-2313(97)00093-8 CrossRefGoogle Scholar
  5. Bai Z, Yan X, Kang Z, Hu Y, Zhang X, Zhang Y (2015) Nano Energy 14:392–400.  https://doi.org/10.1016/j.nanoen.2014.09.005 CrossRefGoogle Scholar
  6. Bai Y, Chen T, Wang P, Wang L, Ye L, Shi X, Bai W (2016) Sol Energy Mater Sol Cells 157:406–414.  https://doi.org/10.1016/j.solmat.2016.07.001 CrossRefGoogle Scholar
  7. Bakar SA, Ribeiro C (2016) J Mol Catal A Chem 412:78–92.  https://doi.org/10.1016/j.molcata.2015.12.002 CrossRefGoogle Scholar
  8. Basahel SN, Ali TT, Mokhtar M, Narasimharao K (2015) Nanoscale Res Lett 10:73–86.  https://doi.org/10.1186/s11671-015-0780-z CrossRefGoogle Scholar
  9. Batistela VR, Fogac LZ, Fávaro SL, Caetano W, Machado NRCF, Hioka N (2017) Colloids Surf A Physicochem Eng Asp 513:20–27.  https://doi.org/10.1016/j.colsurfa.2016.11.023 CrossRefGoogle Scholar
  10. Belver C, Bedia J, Rodriguez JJ (2017) J Hazard Mater 322 (233–242.  https://doi.org/10.1016/j.jhazmat.2016.02.028 CrossRefGoogle Scholar
  11. Bhethanabotla VC, Russell DR, Kuhn JN (2017) Appl Catal B Environ 202:156–164.  https://doi.org/10.1016/j.apcatb.2016.09.008 CrossRefGoogle Scholar
  12. Bingham S, Daoud WA (2011) J Mater Chem 21:2041–2050.  https://doi.org/10.1039/C0JM02271C CrossRefGoogle Scholar
  13. Bu Y, Chen Z (2014) Electrochim Acta 144:42–49.  https://doi.org/10.1016/j.electacta.2014.08.095 CrossRefGoogle Scholar
  14. Cai A, Du L, Wang Q, Chang Y, Wang X, Guo X (2016) Mater Sci Semicond Process 43:25–33.  https://doi.org/10.1016/j.mssp.2015.11.017 CrossRefGoogle Scholar
  15. Cao Z, Zhu S, Qu H, Qi D, Ziener U, Yang L, Yan Y, Yang H (2014) J Colloid Interface Sci 435:51–58.  https://doi.org/10.1016/j.jcis.2014.08.021 CrossRefGoogle Scholar
  16. Carp, Tirsoaga A, Jurca B, Ene R, Somacescu S, Ianculescu A (2015) Carbohydr Polym 115:285–293.  https://doi.org/10.1016/j.carbpol.2014.08.061 CrossRefGoogle Scholar
  17. Carroll JP, Myles A, Quilty B, McCormack DE, Fagan R, Hinder SJ, Dionysiou DD, Pillai SC (2017) J Hazard Mater 324(A):39–47.  https://doi.org/10.1016/j.jhazmat.2015.12.038 CrossRefGoogle Scholar
  18. Chang CF, Man CY (2014) Colloids Surf A Physicochem Eng Asp 441:255–261.  https://doi.org/10.1016/j.colsurfa.2013.09.009 CrossRefGoogle Scholar
  19. Chang F, Zhang J, Xie Y, Chen J, Li C, Wang J, Luo J, Deng B, Hu X (2014) Appl Surf Sci 311:574–581.  https://doi.org/10.1016/j.apsusc.2014.05.111 CrossRefGoogle Scholar
  20. Chaudhuri RG, Paria S (2014) Dalton Trans 43:5526–5534.  https://doi.org/10.1039/C3DT53311E CrossRefGoogle Scholar
  21. Chen Z, Ge Ma Z, Chen Y, Zhang Z, Zhang J, Gao Q, Meng M, Yuan X, Wang J, Liu GZ (2017) Appl Surf Sci 396:609–615.  https://doi.org/10.1016/j.apsusc.2016.10.203 CrossRefGoogle Scholar
  22. Cheng N, Tian J, Liu Q, Ge C, Qusti A, Asiri A, Al-Youbi A, Sun X. ACS Appl Mater Interfaces 5, 15, 6815–6819.  https://doi.org/10.1021/am401802r
  23. Chong MN, Tneu ZY, Poh PE, Jin B, Aryal R (2015) J Taiwan Inst Chem Eng 50:288–296.  https://doi.org/10.1016/j.jtice.2014.12.013 CrossRefGoogle Scholar
  24. Fan Q, Liu J, Yu Y, Zuo S, Li B (2017) Appl Surf Sci 391(B):360–368.  https://doi.org/10.1016/j.apsusc.2016.04.055 CrossRefGoogle Scholar
  25. Feng LL, Zou Y, Li C, Gao S, Zhou LJ, Sun Q, Fan M, Wang H, Wang D, Li G-D, Zou X (2014) Int J Hydrog Energy 39(28):15373–15379.  https://doi.org/10.1016/j.ijhydene.2014.07.160 CrossRefGoogle Scholar
  26. Fronczak M, Krajewska M, Demby K, Bystrzejewski M (n.d.) J Phys Chem C 121(29):15756–15766.  https://doi.org/10.1021/acs.jpcc.7b03674
  27. Fujishima, Honda K (1972) Nature 238:37.  https://doi.org/10.1038/238037a0 CrossRefGoogle Scholar
  28. Gao X, Su X, Yang C, Xiao F, Wang J, Cao X, Wang S, Lu Z (2013) Sensors Actuators B 181:537–543.  https://doi.org/10.1016/j.snb.2013.02.031 CrossRefGoogle Scholar
  29. García EB, Elmouwahidi A, Álvarez MA, Marín FC, Cadenas AFP, Hódar FJM (2017) Appl Catal B Environ 201:29–40.  https://doi.org/10.1016/j.apcatb.2016.08.015 CrossRefGoogle Scholar
  30. Ghasemi S, Hashemian SJ, Alamolhoda AA, Gocheva I, Setayesh SR (2017) Mater Res Bull 87:40–47.  https://doi.org/10.1016/j.materresbull.2016.11.020 CrossRefGoogle Scholar
  31. Glossary of terms used in photochemistry (2006) IUPAC recommendations. 3rd edn., p 384.  https://doi.org/10.1351/pac200779030293
  32. Gupta R, Eswar NKR, Modak JM, Madras G (2017) Chem Eng J 307:966–980.  https://doi.org/10.1016/j.cej.2016.08.142. CrossRefGoogle Scholar
  33. Habibi MH, Karimi B, Zendehdel M, Habibi M (2013) Spectrochim Acta A Mol Biomol Spectrosc 116:374–380.  https://doi.org/10.1016/j.saa.2013.07.046 CrossRefGoogle Scholar
  34. Haggerty JES, Schelhas LT, Kitchaev DA, Mangum JS, Garten LM, Sun W, Stone KH, Perkins JD, Toney MF, Ceder G, Ginley DS, Gorman BP, Tate J (2017) Sci Rep 7:15232.  https://doi.org/10.1038/s41598-017-15364-y CrossRefGoogle Scholar
  35. Hagura N, Ogi T, Shirahama T, Iskandar F, Okuyama K (2011) J Lumin 131:921–925.  https://doi.org/10.1016/j.jlumin.2010.12.024 CrossRefGoogle Scholar
  36. Han Q, Hu C, Zhao F, Zhang Z, Chen N, Qu L (2015) J Mater Chem A 3:4612–4619.  https://doi.org/10.1039/C4TA06093H CrossRefGoogle Scholar
  37. Hanifehpour Y, Hamnabard N, Khomami B, Joo SW, Min BK, Jung JH (2016) J Rare Earths 34(1):45–54.  https://doi.org/10.1016/j.molliq.2016.06.076.
  38. Hayashi H, Kira A, Umeyama T, Matano Y, Charoensirithavorn P, Sagawa T, Yoshikawa S, Tkachenko NV, Lemmetyinen H, Imahori H (2009) J Phys Chem C 113:10819–10828.  https://doi.org/10.1021/jp902623g CrossRefGoogle Scholar
  39. He J, Sun H, Indrawirawan S, Duan X, Tade MO, Wang S (2015) J Colloid Interface Sci 456:15–21.  https://doi.org/10.1016/j.jcis.2015.06.003 CrossRefGoogle Scholar
  40. Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Chem Rev 95:69–96.  https://doi.org/10.1021/cr00033a004 CrossRefGoogle Scholar
  41. Hou HJ, Zhang XH, Huang DK, Ding X, Wang SY, Yang XL, Li SQ, Xiang YG, Chen H (2017) Appl Catal B Environ 203:563–571.  https://doi.org/10.1016/j.apcatb.2016.10.059 CrossRefGoogle Scholar
  42. Hu Y, Tsai HL, Huangk CL (2003) J Eur Ceram Soc 23:691–696.  https://doi.org/10.1016/S0955-2219(02)00194-2. CrossRefGoogle Scholar
  43. Izumi Y (2013) Coord Chem Rev 257:171–186.  https://doi.org/10.1016/j.ccr.2012.04.018 CrossRefGoogle Scholar
  44. Jagadish C, Pearton S (2006) Zinc oxide – Bulk, thin films and nanostructures, 1st edn. Elsevier Science, eBook, Amsterdam. ISBN:9780080464039Google Scholar
  45. Jesty T, Yoon M (2012) Appl Catal B Environ 111–112:502–508.  https://doi.org/10.1016/j.apcatb.2011.10.039 CrossRefGoogle Scholar
  46. Jesty T, Kumar KP, Suresh M (2011) Sci Adv Mater 3:59–65.  https://doi.org/10.1166/sam.2011.1131 CrossRefGoogle Scholar
  47. Jin R, Hu S, Gui J, Liu D (2015) Bull Kor Chem Soc 36(1):17–23.  https://doi.org/10.1002/bkcs.10001 CrossRefGoogle Scholar
  48. Jourshabani M, Shariatinia Z, Badie A (2017) Langmuir 33(28):7062–7078.  https://doi.org/10.1021/acs.langmuir.7b01767 CrossRefGoogle Scholar
  49. Kanhere P, Chen Z (2014) Molecules 19:19995–20022.  https://doi.org/10.3390/molecules191219995
  50. Khatamian M, Khandar AA, Divband B, Haghighi M, Ebrahimiasl S (2012) J Mol Catal A Chem 365:120–127.  https://doi.org/10.1016/j.molcata.2012.08.018 CrossRefGoogle Scholar
  51. Kumar DP, Reddy NL, Kumari MM, Srinivas B, Kumari VD, Sreedhar B, Roddatis V, Bondarchuk O, Karthik M, Neppolian B, Shankar MV (2015) Sol Energy Mater Sol Cells 136:157–166.  https://doi.org/10.1016/j.solmat.2015.01.009 CrossRefGoogle Scholar
  52. Kumar MK, Bhavani K, Naresh G, Srinivas B, Venugopal A (2016) Appl Catal B Environ 199:282–291.  https://doi.org/10.1016/j.apcatb.2016.06.050 CrossRefGoogle Scholar
  53. Kuyumcu ÖK, Kibar E, Glu KD, Gedik F, Akın AN, Glu ŞÖA (2015) J Photochem Photobiol A Chem 311:176–185.  https://doi.org/10.1016/j.jphotochem.2015.05.037 CrossRefGoogle Scholar
  54. Kwon JH, Park J, Park GS, Zuo JM, Kang SY, Oh JY, Kim M (2017) Curr Appl Phys 17(2):152–156.  https://doi.org/10.1016/j.cap.2016.11.013 CrossRefGoogle Scholar
  55. Le S, Jiang T, Zhao Q, Liu XF, Li Y, Fang B, Gong M (2016) RSC Adv 6:38811–38819.  https://doi.org/10.1039/C6RA03982K CrossRefGoogle Scholar
  56. Lee J, Shim HS, Lee M, Song JK, Lee D (2011) J Phys Chem Lett 2:2840–2845.  https://doi.org/10.1021/jz2013352 CrossRefGoogle Scholar
  57. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Water Res 88:428–448.  https://doi.org/10.1016/j.watres.2015.09.045 CrossRefGoogle Scholar
  58. Li X, Cheng Y, Kang S, Mu J (2010) Appl Surf Sci 256:6705–6709.  https://doi.org/10.1016/j.apsusc.2010.04.074 CrossRefGoogle Scholar
  59. Li M, Zhang L, Fan X, Wu M, Du Y, Wang M, Kong Q, Zhang L, Shi J (2016a) Appl Catal B Environ 190:36–43.  https://doi.org/10.1016/j.apcatb.2016.02.060 CrossRefGoogle Scholar
  60. Li L, Qi Y, Lu J, Lin S, An W, Liang Y, Cui W (2016b) Appl Catal B Environ 183:133–141.  https://doi.org/10.1016/j.apcatb.2015.10.035 CrossRefGoogle Scholar
  61. Li Z, Wu Y, Lu G (2016c) Appl Catal B Environ 188:56–64.  https://doi.org/10.1016/j.apcatb.2016.01.057 CrossRefGoogle Scholar
  62. Li W, Ze W, Kong D, D D, Zhou M, Y D, Yan T, You J, Kong D (2016d) J Alloys Compd 688:703–711.  https://doi.org/10.1016/j.jallcom.2016.07.249 CrossRefGoogle Scholar
  63. Li J, Xu X, Liu X, Qin W, Wang M, Pan L (2017a) J Alloys Compd 690:640–646.  https://doi.org/10.1016/j.jallcom.2016.08.176 CrossRefGoogle Scholar
  64. Li X, Shen R, Mab S, Chen X, Xie J (2017b) Appl Surf Sci 430:53–107.  https://doi.org/10.1016/j.apsusc.2017.08.194 CrossRefGoogle Scholar
  65. Lin Y, Chai Y, Yang X, Wang DH, Tang Q, Ghoshroy S (2013) Int J Hydrog Energy 38:2634–2640.  https://doi.org/10.1016/j.ijhydene.2012.11.100 CrossRefGoogle Scholar
  66. Liu Y, Wang Z, Wang W, An X, Mi S, Tang J, Huang W (2014a) Appl Surf Sci 315:314–322.  https://doi.org/10.1016/j.apsusc.2014.07.143 CrossRefGoogle Scholar
  67. Liu Y, Wang Z, Wang W, Huang W (2014b) J Catal 310:16–23.  https://doi.org/10.1016/j.jcat.2013.03.024 CrossRefGoogle Scholar
  68. Liu S, Li D, Sun H, Ang HM, Tadé MO, Wang S (2016a) J Colloid Interface Sci 468:176–182.  https://doi.org/10.1016/j.jcis.2016.01.051 CrossRefGoogle Scholar
  69. Liu T, Li X, Yuan X, Wang Y, Li F (2016b) J Mol Catal A Chem 414:122–129.  https://doi.org/10.1016/j.molcata.2016.01.011 CrossRefGoogle Scholar
  70. Liu F, Yu J, Tu G, Qu L, Xiao J, Liu Y, Wang L, Lei J, Zhang J (2017a) Appl Catal B Environ 201:1–11.  https://doi.org/10.1016/j.apcatb.2016.08.001 CrossRefGoogle Scholar
  71. Liu H, Chen D, Wang Z, Jing H, Zhang R (2017b) Appl Catal B Environ 203:300–313.  https://doi.org/10.1016/j.apcatb.2016.10.014 CrossRefGoogle Scholar
  72. Lotfiman S, Ghorbanpour M (2017) Surf Coat Technol 310:129–133.  https://doi.org/10.1016/j.surfcoat.2016.12.032 CrossRefGoogle Scholar
  73. Martha S, Reddy KH, Parida KM (2014) J Mater Chem A 2:3621–3631.  https://doi.org/10.1039/C3TA14285J CrossRefGoogle Scholar
  74. McNaught AD, Wilkinson A (1997) IUPAC- compendium of chemical terminology, 2nd edn. Blackwell Scientific Publications, Oxford.  https://doi.org/10.1351/goldbook.X06695 CrossRefGoogle Scholar
  75. Medrano MGM, Kowalska E, Lehoux A, Herissan A, Ohtani B, Bahena D, Briois V, Justin CC, López JLR, Remita H (2016) J Phys Chem C 120(9):5143–5154.  https://doi.org/10.1021/acs.jpcc.5b10703 CrossRefGoogle Scholar
  76. Morkoç H, Özg€ur Ü (n.d.) Zinc oxide: fundamentals, materials and device technology. ISBN:978-3-527-40813-9Google Scholar
  77. Moussawi RN, Patra D (2016) Sci Rep 6:24565.  https://doi.org/10.1038/srep24565 CrossRefGoogle Scholar
  78. Muthulingam S, Lee IH, Uthirakumar P (2015) J Colloid Interface Sci 455:101–109.  https://doi.org/10.1016/j.jcis.2015.05.046 CrossRefGoogle Scholar
  79. Pawar RC, Kang S, Ahn SH, Lee CS (2015) RSC Adv 5:24281–24292.  https://doi.org/10.1039/C4RA15560B CrossRefGoogle Scholar
  80. Qi F, Li Y, Wang Y, Wang Y, Liu S, Zhao X (2016) RSC Adv 6:81378–81385.  https://doi.org/10.1039/C6RA17613E. CrossRefGoogle Scholar
  81. Qin J, Zhang X, Yang C, Cao M, Ma M, Liu R (2017) Appl Surf Sci 392:196–203.  https://doi.org/10.1016/j.apsusc.2016.09.043
  82. Qiu P, Xu C, Chen H, Jiang F, Wang X, Lu R, Zhang X (2017) Appl Catal B Environ 206:319–327.  https://doi.org/10.1016/j.apcatb.2017.01.058 CrossRefGoogle Scholar
  83. Radhika S, Thomas J (2017) J Environ Chem Eng 5:4239–4250.  https://doi.org/10.1016/j.jece.2017.08.013 CrossRefGoogle Scholar
  84. Radzimska AK, Jesionowski T (2014) Materials 7:2833–2881.  https://doi.org/10.3390/ma7042833 CrossRefGoogle Scholar
  85. Rémy SP, Dufour F, Herissan A, Ruaux V, Maugé F, Hazime R, Foronato C, Guillard C, Chaneac C, Durupthy O, Justin CC, Cassaignon S (2017) Appl Catal B Environ 203:324–334.  https://doi.org/10.1016/j.apcatb.2016.10.031 CrossRefGoogle Scholar
  86. Rutar M, Rozman N, Pregelj M, Bittencourt C, Korošec RC, Škapin AS, Mrzel A, Škapin SD, Umek P (2015) Beilstein J Nanotechnol 6:831–844.  https://doi.org/10.3762/bjnano.6.86. CrossRefGoogle Scholar
  87. Sagara N, Kamimura S, Tsubota T, Ohno T (2016) Appl Catal B Environ 192:193–198.  https://doi.org/10.1016/j.apcatb.2016.03.055 CrossRefGoogle Scholar
  88. Samsudin EM, Hamid SBA, Juan JC, Basirun WJ, Centi G (2016) Appl Surf Sci 370:380–393.  https://doi.org/10.1016/j.apsusc.2016.02.172 CrossRefGoogle Scholar
  89. Senthilraja, Krishnakumar B, Subash B, Sobral AJFN, Swaminathan M, Shanthi M (2016) J Ind Eng Chem 33:51–58.  https://doi.org/10.1016/j.jiec.2015.09.010 CrossRefGoogle Scholar
  90. Senthilrajaa A, Krishnakumara B, Swaminathana M, Nagarajanb S (2014) New J Chem 38:1573–1580.  https://doi.org/10.1039/C3NJ01356A CrossRefGoogle Scholar
  91. Shahrokhi M (2016) Appl Surf Sci 390:377–384.  https://doi.org/10.1016/j.apsusc.2016.08.055. CrossRefGoogle Scholar
  92. Sharma V, Kumar S, Krishnan V (2016) ChemistrySelect 1:2963–2970.  https://doi.org/10.1002/slct.201600671 CrossRefGoogle Scholar
  93. Shen SJ, Yang TS, Wong MS (2016a) Surf Coat Technol 303:184–190.  https://doi.org/10.1016/j.surfcoat.2016.03.042 CrossRefGoogle Scholar
  94. Shen S, Zhao D, Chen J, Guo L, Mao SS (2016b) Appl Catal A Gen 521:111–117.  https://doi.org/10.1016/j.apcata.2015.11.004 CrossRefGoogle Scholar
  95. Shi Y, Li H, Wang L, Shen W, Chen H (2012) ACS Appl Mater Interfaces 4:4800–4806.  https://doi.org/10.1021/am3011516 CrossRefGoogle Scholar
  96. Shi L, Wang F, Zhang J, Sun J (2016) Ceram Int 42:18116–18123.  https://doi.org/10.1016/j.ceramint.2016.08.124 CrossRefGoogle Scholar
  97. Sivakumar R, Jesty T, Yoon M (2012) J Photochem Photobiol C: Photochem Rev 13:277–298.  https://doi.org/10.1016/j.jphotochemrev.2012.08.001 CrossRefGoogle Scholar
  98. Sridharan K, Kuriakose T, Philip R, Park TJ (2014) Appl Surf Sci 308:139–147.  https://doi.org/10.1016/j.apsusc.2014.04.121.
  99. Sridharan K, Jang E, Park JH, Kim JH, Lee JH, Park TJ (2015) Chem Eur J 21:1–8.  https://doi.org/10.1002/chem.201500163 CrossRefGoogle Scholar
  100. Stengl V, Bakardjieva S, Murafa N (2009) Mater Chem Phys 114:217–226.  https://doi.org/10.1016/j.matchemphys.2008.09.025 CrossRefGoogle Scholar
  101. Su Y, Chen S, Quan X, Zhao H, Zhang Y (2008) Appl Surf Sci 255(5,1):2167–2172.  https://doi.org/10.1016/j.apsusc.2008.07.053 CrossRefGoogle Scholar
  102. Subash B, Krishnakumar R, Velmurugan, Swaminathan M, Shanthi M (2012) Catal Sci Technol 2:2319–2326.  https://doi.org/10.1039/C2CY20254A CrossRefGoogle Scholar
  103. Subash B, Krishnakumar B, Sobral AJFN, Surya C, John NAA, Senthilraja A, Swaminathan M, Shanthi M (2016) Sep Purif Technol 164:170–181.  https://doi.org/10.1016/j.seppur.2016.03.029 CrossRefGoogle Scholar
  104. Sudha M, Senthilkumar S, Hariharan R, Suganthi A, Rajarajan M (2013) J Sol-Gel Sci Technol 65(3):301–310.  https://doi.org/10.1007/s10971-012-2936-y CrossRefGoogle Scholar
  105. Sui Y, Su C, Yang X, Hu J, Lin X (2015) J Mol Catal A Chem 410:226–234.  https://doi.org/10.1016/j.molcata.2015.09.018 CrossRefGoogle Scholar
  106. Suligoj A, Stangar UL, Ristic A, Mazaj M, Verhovsek D, Tusara NN (2016) Appl Catal B Environ 184:119–131.  https://doi.org/10.1016/j.apcatb.2015.11.007 CrossRefGoogle Scholar
  107. Sun Y, Chen L, Bao Y, Zhang Y, Wang J, Fu M, Wu J, Ye D (2016) Catalysts 6:188.  https://doi.org/10.3390/catal6120188 CrossRefGoogle Scholar
  108. Suryawanshi A, Dhanasekaran P, Mhamane D, Kelkar S, Patil S, Gupta N, Ogal S (2012) Int J Hydrog Energy 37:9584–9589.  https://doi.org/10.1016/j.ijhydene.2012.03.123 CrossRefGoogle Scholar
  109. Taheri E, Petala A, Mantzavinos D, Kondarides DI (2017) Catal Today 280:99–107.  https://doi.org/10.1016/j.cattod.2016.05.047. CrossRefGoogle Scholar
  110. Thomas J, Chitra KR (2014) Adv Mater Res 938:292–296.  https://doi.org/10.4028/www.scientific.net/AMR.938.292 CrossRefGoogle Scholar
  111. Thomas AF, Goettmann F, Antonietti M, Müller JO, Carlsson JM (2008) J Mater Chem 18:4893–4908.  https://doi.org/10.1039/B800274F CrossRefGoogle Scholar
  112. Thomas J, Radhika S, Yoon M (2016) J Mol Catal A Chem 411:146–156.  https://doi.org/10.1016/j.molcata.2015.10.021 CrossRefGoogle Scholar
  113. Thomas J, Ambili KS, Radhika S (2018) Catal Today 310:11–18.  https://doi.org/10.1016/j.cattod.2017.06.029 CrossRefGoogle Scholar
  114. Thomasa J, Radhika S, Yoon M (2017) Mol Catal 433:274–281.  https://doi.org/10.1016/j.mcat.2016.12.016 CrossRefGoogle Scholar
  115. Tobajas M, Belver C, Rodriguez JJ (2017) Chem Eng J 309:596–606.  https://doi.org/10.1016/j.cej.2016.10.002 CrossRefGoogle Scholar
  116. Tongon W, Chawengkijwanich C, Chiarakorn S (2014) Superlatices Microstruct 69:108–121.  https://doi.org/10.1016/j.spmi.2014.02.003 CrossRefGoogle Scholar
  117. Tripathy N, Ahmad R, Kuk H, Lee DH, Hahn YB, Khang G, Photochem J (2016) Photobiol B: Bio 161:312–317.  https://doi.org/10.1016/j.jphotobiol.2016.06.003 CrossRefGoogle Scholar
  118. Upadhyay R, Tripathi M, Pandey A (2013) High Energy Chem 47(6):308–314.  https://doi.org/10.1134/S0018143913060106 CrossRefGoogle Scholar
  119. Vadivel S, Maruthamani D, Habibi-Yangjeh A, Paul B, Dhar SS, Selvam K (2016a) J Colloid Interface Sci 480:126–136.  https://doi.org/10.1016/j.jcis.2016.07.012 CrossRefGoogle Scholar
  120. Vadivel S, Kamalakannan VP, Kavitha NP, Priya TS, Balasubramanian N (2016b) Mater Sci Semicond Process 41:59–66.  https://doi.org/10.1016/j.mssp.2015.07.023 CrossRefGoogle Scholar
  121. Wang Y, Wang X, Antonietti M (2012) Angew Chem Int Ed 51:68–89.  https://doi.org/10.1002/anie.201101182 CrossRefGoogle Scholar
  122. Wang H, Yuan X, Wu Y, Zeng G, Chen X, Leng L, Li H (2015) Appl Catal B Environ 174–175:445–454.  https://doi.org/10.1016/j.apcatb.2015.03.037 CrossRefGoogle Scholar
  123. Wang S, Zhang X, Li S, Fang Y, Pan L, Zou JJ (2017) J Hazard Mater 331:235–245.  https://doi.org/10.1016/j.jhazmat.2017.02.049 CrossRefGoogle Scholar
  124. Wee LH, Meledina M, Turner S, Custers K, Kerkhofs S, Sree SP, Gobechiya E, Kirschhock CEA, Van Tendeloo G, Martens JA (2016) RSC Adv 6:46678–46685.  https://doi.org/10.1039/C6RA06141A CrossRefGoogle Scholar
  125. Wen J, Li X, Liu W, Fang Y, Xie J, Xu Y (2015) Chin J Catal 36:2049–2070.  https://doi.org/10.1016/S1872-2067(15)60999-8 CrossRefGoogle Scholar
  126. Wu W, Jiang C, Roy VAL (2015) Nanoscale 7:38–58.  https://doi.org/10.1039/C4NR04244A CrossRefGoogle Scholar
  127. Xu J, Li Y, Peng S, Lu G, Li S (2013) Phys Chem Chem Phys 15:7657–7665.  https://doi.org/10.1039/C3CP44687E CrossRefGoogle Scholar
  128. Yao B, Peng C, Zhang W, Zhang Q, Niu J, Zhao J (2015) Appl Catal B Environ 174–175:77–84.  https://doi.org/10.1016/j.apcatb.2015.02.030 CrossRefGoogle Scholar
  129. You R, Dou H, Chen L, Zheng S, Zhang Y (2017) RSC Adv 7:15842.  https://doi.org/10.1039/C7RA01036B CrossRefGoogle Scholar
  130. Yu MM, Wang C, Li J, Yuan L, Sun WJ (2015) Appl Surf Sci 342:47–54.  https://doi.org/10.1016/j.apsusc.2015.03.020 CrossRefGoogle Scholar
  131. Yu W, Zhang J, Peng T (2016) Appl Catal B Environ 181:220–227.  https://doi.org/10.1016/j.apcatb.2015.07.031 CrossRefGoogle Scholar
  132. Yu Q, Jiang L, Gao S, Zhang S, Ai T, Feng X, Wang W (2017) Ceram Int 43(2):2864–2866.  https://doi.org/10.1016/j.ceramint.2016.10.190 CrossRefGoogle Scholar
  133. Yuan YJ, Tu JR, Ye ZJ, Lu HW, Ji ZG, Hu B, Li YH, Cao DP, Yu ZT, Zou ZG (2015) Dyes Pigments 123:285–292.  https://doi.org/10.1016/j.dyepig.2015.08.014 CrossRefGoogle Scholar
  134. Zalfani M, van der Schueren B, Mahdouani M, Bourguig R, Yu WB, Wu M, Deparis O, Li Y, Su BL (2016) Appl Catal B Environ 199:187–198.  https://doi.org/10.1016/j.apcatb.2016.06.016. CrossRefGoogle Scholar
  135. Zhang Z, Zhou Y, Zhang Y, Sheng X, Zhou S, Xiang S (2013) Appl Surf Sci 286:344–350.  https://doi.org/10.1016/j.apsusc.2013.09.084 CrossRefGoogle Scholar
  136. Zhang X, L Y, Zhuang C, Peng T, Li R, Li X (2014) ACS Catal 4:162–170.  https://doi.org/10.1021/cs400863c CrossRefGoogle Scholar
  137. Zhang H, Li S, Lu R, Yu A (2015) ACS Appl Mater Interfaces 7:21868–21874.  https://doi.org/10.1021/acsami.5b06309 CrossRefGoogle Scholar
  138. Zhang Z, Liu K, Feng Z, Bao Y, Dong B (2016) Sci Rep 6:19221–19232.  https://doi.org/10.1038/srep19221. CrossRefGoogle Scholar
  139. G. Zhang, S. Zhang, L. Wang, R. Liu, Y. Zeng, X. Xia, Y. Liu, S. Luo, Appl Surf Sci 391 (2017) 228–235,  https://doi.org/10.1016/j.apsusc.2016.04.095.
  140. Zhao K, Lu Y, Lu N, Zhao Y, Yuan X, Zhang H, Teng L, Li F (2013) Appl Surf Sci 285:616–624.  https://doi.org/10.1016/j.apsusc.2013.08.101 CrossRefGoogle Scholar
  141. Zhao F, Shang J, Liu J (n.d.) Beijing Daxue Xuebao Ziran Kexue Ban/Acta Scientiarum Naturalium Universitatis Pekinensis 46(2):293–297Google Scholar
  142. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012a) Energy Environ Sci 5:6717–6731.  https://doi.org/10.1039/C2EE03479D CrossRefGoogle Scholar
  143. Zheng Y, Li X, Dutta PK (2012b) Sensors 12:5170–5194.  https://doi.org/10.3390/s120405170 CrossRefGoogle Scholar
  144. Zhong J, Li J, Feng F, Huang S, Zeng J (2013) Mater Lett 100:195–197.  https://doi.org/10.1016/j.matlet.2013.03.030 CrossRefGoogle Scholar
  145. Zhu Y, Zhu M, Kang L, Yu F, Dai B (2015) Ind Eng Chem Res 54:2040–2047.  https://doi.org/10.1021/ie504372p CrossRefGoogle Scholar
  146. Zhu Y, Shah MW, Wang C (2017) Appl Catal B Environ 203:526–532.  https://doi.org/10.1016/j.apcatb.2016.10.056 CrossRefGoogle Scholar
  147. Zyoud AH, Hilal HS (2014) Phyto Chem Bio Sub J 8(3):127–137. https://doi.org/10.163.pcbsj/2014.8.3.127
  148. Zyoud, Dwikat M, Al-Shakhshir S, Ateeq S, Shteiwi J, Zu’bi A, Helal MHS, Campet G, Park DH, Kwon H, Kim TW, Kharoof M, Shawahna R, Hilal HS (2016) J Photochem Photobiol A Chem 328:207–216.  https://doi.org/10.1016/j.jphotochem.2016.05.020 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jesty Thomas
    • 1
  • K. S. Ambili
    • 1
  1. 1.Research Department of ChemistryKuriakose Elias CollegeKottayamIndia

Personalised recommendations