Advertisement

Advances and Innovations in Photocatalysis

  • Giuseppina Iervolino
  • Vincenzo Vaiano
  • Paolo CiambelliEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 31)

Abstract

This chapter is related to the advances and innovations of photocatalytic processes in recent years. In particular, both the innovative aspects of the applicability of photocatalysis and technological advances were considered, with particular attention to the photocatalytic energy recovery, organic synthesis and new reactor configurations.

In particular, the chapter discusses the possibility to produce an energy source such as hydrogen and/or methane from the degradation of organic substance present in wastewater by heterogeneous photocatalysis. Particular attention has been given to the use of photocatalysts active under visible light and to their efficiency in the absence of noble metals. The chapter also reports experimental results in which the simultaneous valorization and purification of food industrial wastewater are proposed using structured photocatalysts. Moreover, in this chapter, the application of photocatalysis in the synthesis of organic compounds will be presented. Finally, new reactor configurations, such as photocatalytic membrane reactors (PMRs), will be discussed.

Keywords

Photocatalysis Hydrogen production Sacrificial agents Wastewater valorization Organic synthesis Selective photocatalysts Doped photocatalysts Visible light sources Photocatalytic membranes Supported photocatalysts 

References

  1. Acar C, Dincer I, Naterer GF (2016) Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energy Res 40(11):1449–1473.  https://doi.org/10.1002/er.3549 CrossRefGoogle Scholar
  2. Almquist CB, Biswas P (2001) The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity. Appl Catal A Gen 214(2):259–271.  https://doi.org/10.1016/S0926-860X(01)00495-1 CrossRefGoogle Scholar
  3. Athanasekou CP, Moustakas NG, Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, … Falaras P (2015). Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl Catal B Environ 178:12–19.  https://doi.org/10.1016/j.apcatb.2014.11.021
  4. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C 7(4):127–144.  https://doi.org/10.1016/j.jphotochemrev.2006.12.001 CrossRefGoogle Scholar
  5. Bickley RI, Munuera G, Stone FS (1973) Photoadsorption and photocatalysis at rutile surfaces. II photocatalytic oxidation of isopropanol. J Catal 31(3):398–407.  https://doi.org/10.1016/0021-9517(73)90311-4 CrossRefGoogle Scholar
  6. Bowker M, Davies PR, Al-Mazroai LS (2009) Photocatalytic reforming of glycerol over gold and palladium as an alternative fuel source. Catal Lett 128(3–4):253–255.  https://doi.org/10.1007/s10562-008-9781-1 CrossRefGoogle Scholar
  7. Castaneda C, Tzompantzi F, Rodriguez-Rodriguez A, Sanchez-Dominguez M, Gomez R (2018) Improved photocatalytic hydrogen production from methanol/water solution using CuO supported on fluorinated TiO2. J Chem Technol Biotechnol 93(4):1113–1120.  https://doi.org/10.1002/jctb.5470 CrossRefGoogle Scholar
  8. Chen T, Feng Z, Wu G, Shi J, Ma G, Ying P, Li C (2007) Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. J Phys Chem C 111(22):8005–8014.  https://doi.org/10.1021/jp071022b CrossRefGoogle Scholar
  9. Chester G, Anderson M, Read H, Esplugas S (1993) A jacketed annular membrane photocatalytic reactor for wastewater treatment: degradation of formic acid and atrazine. J Photochem Photobiol A 71(3):291–297.  https://doi.org/10.1016/1010-6030(93)85013-X CrossRefGoogle Scholar
  10. Chiarello GL, Selli E (2014) Photocatalytic production of hydrogen. In: Advances in hydrogen production, storage and distribution. Woodhead Publishing, Cambridge, UK, pp 216–247Google Scholar
  11. Christoforidis KC, Fornasiero P (2017) Photocatalytic hydrogen production: a rift into the future energy supply. ChemCatChem 9(9):1523–1544.  https://doi.org/10.1002/cctc.201601659 CrossRefGoogle Scholar
  12. Ciambelli P, Sannino D, Palma V, Vaiano V (2005) Cyclohexane photocatalytic oxidative dehydrogenation to benzene on sulphated titania supported MoOx. Stud Surf Sci Catal 155:179–187CrossRefGoogle Scholar
  13. Ciambelli P, Sannino D, Palma V, Vaiano V, Eloy P, Dury F, Gaigneaux EM (2007) Tuning the selectivity of MoOx supported catalysts for cyclohexane photooxidative dehydrogenation. Catal Today 128(3–4):251–257.  https://doi.org/10.1016/j.cattod.2007.07.006 CrossRefGoogle Scholar
  14. Ciambelli P, Sannino D, Palma V, Vaiano V (2008a) The effect of sulphate doping on nanosized TiO2 and MoOx/TiO2 catalysts in cyclohexane photooxidative dehydrogenation. Int J Photoenergy., No pp. given.  https://doi.org/10.1155/2008/258631
  15. Ciambelli P, Sannino D, Palma V, Vaiano V, Bickley RI (2008b) Reaction mechanism of cyclohexane selective photo-oxidation to benzene on molybdena/titania catalysts. Appl Catal A Gen 349(1–2):140–147.  https://doi.org/10.1016/j.apcata.2008.07.019 CrossRefGoogle Scholar
  16. Ciambelli P, Sannino D, Palma V, Vaiano V, Mazzei RS, Eloy P, Gaigneaux EM (2009) Photocatalytic cyclohexane oxidehydrogenation on sulphated MoOx/γ-Al2O3 catalysts. Catal Today 141(3–4):367–373.  https://doi.org/10.1016/j.cattod.2008.10.020 CrossRefGoogle Scholar
  17. Colmenares JC, Magdziarz A, Aramendia MA, Marinas A, Marinas JM, Urbano FJ, Navio JA (2011) Influence of the strong metal support interaction effect (SMSI) of Pt/TiO2 and Pd/TiO2 systems in the photocatalytic biohydrogen production from glucose solution. Catal Commun 16(1):1–6.  https://doi.org/10.1016/j.catcom.2011.09.003 CrossRefGoogle Scholar
  18. Dauenhauer PJ, Salge JR, Schmidt LD (2006) Renewable hydrogen by autothermal steam reforming of volatile carbohydrates. J Catal 244(2):238–247.  https://doi.org/10.1016/j.jcat.2006.09.011 CrossRefGoogle Scholar
  19. Djeghri N, Formenti M, Juillet F, Teichner SJ (1974) Photointeraction on the surface of titanium dioxide between oxygen and alkanes. Faraday Discuss Chem Soc 58(0):185–193.  https://doi.org/10.1039/DC9745800185 CrossRefGoogle Scholar
  20. Formenti M, Juillet F, Teichner SJ (1970) Controlled photooxidation of paraffins and olefins over anatase at room temperature. C R Acad Sci Ser C 270(2):138–141Google Scholar
  21. Formenti M, Juillet F, Meriaudeau P, Teichner SJ (1973) Heterogeneous photocatalysis. Partial and total oxidation of hydrocarbons and inorganic compounds at room temperature on solid catalysts under irradiationGoogle Scholar
  22. Fu X, Long J, Wang X, Leung DYC, Ding Z, Wu L, … Fu X (2008) Photocatalytic reforming of biomass: a systematic study of hydrogen evolution from glucose solution. Int J Hydrogen Energy 33(22):6484–6491.  https://doi.org/10.1016/j.ijhydene.2008.07.068
  23. Fu X, Wang X, Leung DYC, Gu Q, Chen S, Huang H (2011) Photocatalytic reforming of C3-polyols for H2 production. Appl Catal B 106(3–4):681–688.  https://doi.org/10.1016/j.apcatb.2011.05.045 CrossRefGoogle Scholar
  24. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38.  https://doi.org/10.1038/238037a0 CrossRefGoogle Scholar
  25. Galinska A, Walendziewski J (2005) Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents. Energy Fuel 19(3):1143–1147.  https://doi.org/10.1021/ef0400619 CrossRefGoogle Scholar
  26. Ganiyu SO, van Hullebusch, Eric D, Cretin M, Esposito G, Oturan MA (2015) Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol 156(Part_3):891–914.  https://doi.org/10.1016/j.seppur.2015.09.059 CrossRefGoogle Scholar
  27. Geissen SU, Xi W, Weidemeyer A, Vogelpohl A, Bousselmi L, Ghrabi A, Ennabli A (2001) Comparison of suspended and fixed photocatalytic reactor systems. Water Sci Technol, 44(5, Oxidation Technologies for Water and Wastewater Treatment II):245–249Google Scholar
  28. Geldart D (1972) The effect of particle size and size distribution on the behaviour of gas-fluidised beds. Powder Technol 6(4):201–215.  https://doi.org/10.1016/0032-5910(72)83014-6 CrossRefGoogle Scholar
  29. Giannotti C, Richter C (1999) Natural sun light photocatalysed oxidation of adamantane and cyclohexane by W10O32 4. J Phys IV JP 9(3):Pr3-265–Pr263-270Google Scholar
  30. Gomathisankar P, Noda T, Katsumata H, Suzuki T, Kaneco S (2014) Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts. Front Chem Sci Eng 8(2):197–202.  https://doi.org/10.1007/s11705-014-1417-y CrossRefGoogle Scholar
  31. Hairom NHH, Mohammad AW, Ng LY, Kadhum AAH (2015) Utilization of self-synthesized ZnO nanoparticles in MPR for industrial dye wastewater treatment using NF and UF membrane. Desalin Water Treat 54(4–5):944–955.  https://doi.org/10.1080/19443994.2014.917988 CrossRefGoogle Scholar
  32. Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53(1):115–129.  https://doi.org/10.1016/S0920-5861(99)00107-8 CrossRefGoogle Scholar
  33. Hu X, Hu C, Peng T, Zhou X, Qu J (2010) Plasmon-induced inactivation of enteric pathogenic microorganisms with Ag-AgI/Al2O3 under visible-light irradiation. Environ Sci Technol 44(18):7058–7062.  https://doi.org/10.1021/es1012577 CrossRefGoogle Scholar
  34. Iervolino G, Vaiano V, Murcia JJ, Rizzo L, Ventre G, Pepe G, … Sannino D (2016a) Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts. J Catal 339: 47–56.  https://doi.org/10.1016/j.jcat.2016.03.032
  35. Iervolino G, Vaiano V, Sannino D, Rizzo L, Ciambelli P (2016b) Production of hydrogen from glucose by LaFeO3 based photocatalytic process during water treatment. Int J Hydrog Energy 41(2):959–966.  https://doi.org/10.1016/j.ijhydene.2015.10.085 CrossRefGoogle Scholar
  36. Iervolino G, Vaiano V, Sannino D, Rizzo L, Palma V (2017) Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl Catal B Environ 207:182–194.  https://doi.org/10.1016/j.apcatb.2017.02.008 CrossRefGoogle Scholar
  37. Iervolino G, Vaiano V, Sannino D, Rizzo L, Galluzzi A, Polichetti M, … Campiglia P (2018) Hydrogen production from glucose degradation in water and wastewater treated by Ru-LaFeO3/Fe2O3 magnetic particles photocatalysis and heterogeneous photo-Fenton. Int J Hydrogen Energy 43(4):2184–2196.  https://doi.org/10.1016/j.ijhydene.2017.12.071
  38. Iglesias O, Rivero MJ, Urtiaga AM, Ortiz I (2016) Membrane-based photocatalytic systems for process intensification. Chem Eng J (Amsterdam, Neth) 305:136–148.  https://doi.org/10.1016/j.cej.2016.01.047 CrossRefGoogle Scholar
  39. Jang JS, Kim HG, Lee JS (2012) Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal Today 185(1):270–277.  https://doi.org/10.1016/j.cattod.2011.07.008 CrossRefGoogle Scholar
  40. Kawai T, Sakata T (1980) Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 286(5772):474–476.  https://doi.org/10.1038/286474a0 CrossRefGoogle Scholar
  41. Kawai T, Sakata T (1981) Photocatalytic hydrogen production from water by the decomposition of poly(vinyl chloride), protein, algae, dead insects, and excrement. Chem Lett (1):81–84.  https://doi.org/10.1246/cl.1981.81
  42. Kertesz S, Cakl J, Jirankova H (2014) Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination 343:106–112.  https://doi.org/10.1016/j.desal.2013.11.013 CrossRefGoogle Scholar
  43. Kim J, Monllor-Satoca D, Choi W (2012) Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy Environ Sci 5(6):7647–7656.  https://doi.org/10.1039/c2ee21310a CrossRefGoogle Scholar
  44. Kondarides DI, Daskalaki VM, Patsoura A, Verykios XE (2008) Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catal Lett 122(1–2):26–32.  https://doi.org/10.1007/s10562-007-9330-3 CrossRefGoogle Scholar
  45. Kou J, Lu C, Wang J, Chen Y, Xu Z, Varma RS (2017) Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev 117(3):1445–1514.  https://doi.org/10.1021/acs.chemrev.6b00396 CrossRefGoogle Scholar
  46. Li Y-X, Wang J-X, Peng S-Q, Lu G-X, Li S-B (2010) Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation. Int J Hydrog Energy 35(13):7116–7126.  https://doi.org/10.1016/j.ijhydene.2010.02.017 CrossRefGoogle Scholar
  47. Lianos P, Strataki N, Antoniadou M (2009) Photocatalytic and photoelectrochemical hydrogen production by photodegradation of organic substances. Pure Appl Chem 81(8):1441–1448.  https://doi.org/10.1351/PAC-CON-08-07-07 CrossRefGoogle Scholar
  48. Liu Y, Guo L, Yan W, Liu H (2006) A composite visible-light photocatalyst for hydrogen production. J Power Sources 159(2):1300–1304.  https://doi.org/10.1016/j.jpowsour.2005.11.105 CrossRefGoogle Scholar
  49. Maldotti A, Amadelli R, Varani G, Tollari S, Porta F (1994) Photocatalytic processes with polyoxotungstates: oxidation of cyclohexylamine. Inorg Chem 33(13):2968–2973.  https://doi.org/10.1021/ic00091a041 CrossRefGoogle Scholar
  50. Maldotti A, Amadelli R, Carassiti V, Molinari A (1997) Catalytic oxygenation of cyclohexane by photoexcited (nBu4N)4W10O32: the role of radicals. Inorg Chim Acta 256(2):309–312.  https://doi.org/10.1016/S0020-1693(96)05432-1 CrossRefGoogle Scholar
  51. Mascolo G, Comparelli R, Curri ML, Lovecchio G, Lopez A, Agostiano A (2007) Photocatalytic degradation of methyl red by TiO2: comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst. J Hazard Mater 142(1–2):130–137.  https://doi.org/10.1016/j.jhazmat.2006.07.068 CrossRefGoogle Scholar
  52. Miwa T, Kaneco S, Katsumata H, Suzuki T, Ohta K, Chand Verma S, Sugihara K (2010) Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. Int J Hydrog Energy 35(13):6554–6560.  https://doi.org/10.1016/j.ijhydene.2010.03.128 CrossRefGoogle Scholar
  53. Mohamed RM, Aazam ES (2012) H2 production with low CO selectivity from photocatalytic reforming of glucose on Ni/TiO2-SiO2. Chin J Catal 33(2):247–253.  https://doi.org/10.1016/S1872-2067(10)60276-8 CrossRefGoogle Scholar
  54. Molinari A, Maldotti A, Amadelli R, Sgobino A, Carassiti V (1998) Integrated photocatalysts for hydrocarbon oxidation: polyoxotungstates/ iron porphyrins systems in the reductive activation of molecular oxygen. Inorg Chim Acta 272(1–2):197–203CrossRefGoogle Scholar
  55. Molinari R, Pirillo F, Falco M, Loddo V, Palmisano L (2004) Photocatalytic degradation of dyes by using a membrane reactor. Chem Eng Process Process Intensif 43(9):1103–1114.  https://doi.org/10.1016/j.cep.2004.01.008 CrossRefGoogle Scholar
  56. Molinari R, Lavorato C, Argurio P (2017) Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal Today 281(Part_1):144–164.  https://doi.org/10.1016/j.cattod.2016.06.047 CrossRefGoogle Scholar
  57. Mozia S (2010) Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep Purif Technol 73(2):71–91.  https://doi.org/10.1016/j.seppur.2010.03.021 CrossRefGoogle Scholar
  58. Muhamad MS, Salim MR, Lau WJ, Yusop Z (2016) A review on bisphenol a occurrences, health effects and treatment process via membrane technology for drinking water. Environ Sci Pollut Res 23(12):11549–11567.  https://doi.org/10.1007/s11356-016-6357-2 CrossRefGoogle Scholar
  59. Parida KM, Reddy KH, Martha S, Das DP, Biswal N (2010) Fabrication of nanocrystalline LaFeO3: an efficient sol-gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int J Hydrog Energy 35(22):12161–12168.  https://doi.org/10.1016/j.ijhydene.2010.08.029 CrossRefGoogle Scholar
  60. Puga AV (2016) Photocatalytic production of hydrogen from biomass-derived feedstocks. Coord Chem Rev 315:1–66.  https://doi.org/10.1016/j.ccr.2015.12.009 CrossRefGoogle Scholar
  61. Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44(2):185–195Google Scholar
  62. Romero NA, Nicewicz DA (2016) Organic photoredox catalysis. Chem Rev 116(17):10075–10166.  https://doi.org/10.1021/acs.chemrev.6b00057 CrossRefGoogle Scholar
  63. Sabate J, Anderson MA, Aguado MA, Gimenez J, Cervera-March S, Hill CG Jr (1992) Comparison of titanium oxide TiO2 powder suspensions and TiO2 ceramic membranes supported on glass as photocatalytic systems in the reduction of chromium(VI). J Mol Catal 71(1):57–68.  https://doi.org/10.1016/0304-5102(92)80007-4 CrossRefGoogle Scholar
  64. Sacco O, Stoller M, Vaiano V, Ciambelli P, Chianese A, Sannino D (2012) Photocatalytic degradation of organic dyes under visible light on n-doped TiO2 photocatalysts. Int J Photoenergy 2012, Article ID 626759, 8 pages.  https://doi.org/10.1155/2012/626759
  65. Sadanandam G, Valluri DK, Scurrell MS (2017) Highly stabilized Ag2O-loaded nano TiO2 for hydrogen production from glycerol: water mixtures under solar light irradiation. Int J Hydrog Energy 42(2):807–820.  https://doi.org/10.1016/j.ijhydene.2016.10.131 CrossRefGoogle Scholar
  66. Sannino D, Vaiano V, Ciambelli P, Eloy P, Gaigneaux EM (2011) Avoiding the deactivation of sulphated MoOx/TiO2 catalysts in the photocatalytic cyclohexane oxidative dehydrogenation by a fluidized bed photoreactor. Appl Catal A 394(1–2):71–78.  https://doi.org/10.1016/j.apcata.2010.12.025 CrossRefGoogle Scholar
  67. Sannino D, Vaiano V, Ciambelli P (2013a) A green route for selective synthesis of styrene from ethylbenzene by means of a photocatalytic system. Res Chem Intermed 39(9):4145–4157.  https://doi.org/10.1007/s11164-012-0931-0 CrossRefGoogle Scholar
  68. Sannino D, Vaiano V, Ciambelli P, Murcia JJ, Hidalgo MC, Navio JA (2013b) Gas-phase photocatalytic partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on Au/TiO2 photocatalysts. J Adv Oxid Technol 16(1):71–82.  https://doi.org/10.1515/jaots-2013-0107 CrossRefGoogle Scholar
  69. Sopajaree K, Qasim SA, Basak S, Rajeshwar K (1999) An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part II: experiments on the ultrafiltration unit and combined operation. J Appl Electrochem 29(9):1111–1118CrossRefGoogle Scholar
  70. Speltini A, Sturini M, Maraschi F, Dondi D, Fisogni G, Annovazzi E et al (2015) Evaluation of UV-A and solar light photocatalytic hydrogen gas evolution from olive mill wastewater. Int J Hydrogen Energy 40(12):4303–4310.  https://doi.org/10.1016/j.ijhydene.2015.01.182 CrossRefGoogle Scholar
  71. St. John MR, Furgala AJ, Sammells AF (1983) Hydrogen generation by photocatalytic oxidation of glucose by platinized n-titania powder. J Phys Chem 87(5):801–805.  https://doi.org/10.1021/j100228a021 CrossRefGoogle Scholar
  72. Strataki N, Bekiari V, Kondarides DI, Lianos P (2007) Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films. Appl Catal B 77(1–2):184–189.  https://doi.org/10.1016/j.apcatb.2007.07.015 CrossRefGoogle Scholar
  73. Strataki N, Antoniadou M, Dracopoulos V, Lianos P (2010) Visible-light photocatalytic hydrogen production from ethanol–water mixtures using a Pt–CdS–TiO2 photocatalyst. Catal Today 151(1):53–57.  https://doi.org/10.1016/j.cattod.2010.03.036 CrossRefGoogle Scholar
  74. Sun H, Blatter F, Frei H (1996) Cyclohexanone from cyclohexane and O2 in a zeolite under visible light with complete selectivity. J Am Chem Soc 118(29):6873–6879.  https://doi.org/10.1021/JA953273G CrossRefGoogle Scholar
  75. Teramura K, Tanaka T, Yamamoto T, Funabiki T (2001) Photo-oxidation of cyclohexane over alumina-supported vanadium oxide catalyst. J Mol Catal A Chem 165(1–2):299–301.  https://doi.org/10.1016/S1381-1169(00)00417-9 CrossRefGoogle Scholar
  76. Udani PPC, Ronning M (2015) Comparative study on the photocatalytic hydrogen production from methanol over Cu-, Pd-, Co- and Au-loaded TiO2. Oil Gas Sci Technol 70(5):831–839.  https://doi.org/10.2516/ogst/2015025 CrossRefGoogle Scholar
  77. Vaiano V, Sannino D, Almeida AR, Mul G, Ciambelli P (2013) Investigation of the deactivation phenomena occurring in the cyclohexane photocatalytic oxidative dehydrogenation on MoOx/TiO2 through gas phase and in situ DRIFTS analyses. Catalysts 3(4):978–997., 920 pp.  https://doi.org/10.3390/catal3040978 CrossRefGoogle Scholar
  78. Vaiano V, Sannino D, Ciambelli P (2014) Sustainable gas phase selective photocatalytic oxidation of cyclohexane on MoOx/TiO2/SiO2 catalysts. Chem Eng Trans 39(Special Issue):565–570.  https://doi.org/10.3303/CET1439095 CrossRefGoogle Scholar
  79. Vaiano V, Iervolino G, Sarno G, Sannino D, Rizzo L, Murcia Mesa JJ, … Navío JA (2015) Simultaneous production of CH4 and H2 from photocatalytic reforming of glucose aqueous solution on sulfated Pd-TiO2 catalysts. Oil Gas Sci Technol 70(5):891–902.  https://doi.org/10.2516/ogst/2014062
  80. Wachs IE, Weckhuysen BM (1997) Structure and reactivity of surface vanadium oxide species on oxide supports. Appl Catal A Gen 157(1):67–90.  https://doi.org/10.1016/S0926-860X(97)00021-5 CrossRefGoogle Scholar
  81. Wang C, Cai X, Chen Y, Cheng Z, Luo X, Mo S, … Shen Y (2017) Efficient hydrogen production from glycerol photoreforming over Ag2O-TiO2 synthesized by a sol-gel method. Int J Hydrogen Energy 42(27):17063–17074.  https://doi.org/10.1016/j.ijhydene.2017.05.183
  82. Wu GP, Chen T, Zhou GH, Zong X, Li C (2008) H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts. Sci China Ser B Chem 51(2):97–100.  https://doi.org/10.1007/s11426-007-0132-7 CrossRefGoogle Scholar
  83. Xie Q, Wang Y, Pan B, Wang H, Su W, Wang X (2012) A novel photocatalyst LaOF: facile fabrication and photocatalytic hydrogen production. Catal Commun 27:21–25.  https://doi.org/10.1016/j.catcom.2012.06.019 CrossRefGoogle Scholar
  84. Yamakata A, Ishibashi TA, Onishi H (2003) Effects of water addition on the methanol oxidation on Pt/TiO2 photocatalyst studied by time-resolved infrared absorption spectroscopy. J Phys Chem B 107(36):9820–9823CrossRefGoogle Scholar
  85. Zhang H, Quan X, Chen S, Zhao H, Zhao Y (2006) Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water. Sep Purif Technol 50(2):147–155.  https://doi.org/10.1016/j.seppur.2005.11.018 CrossRefGoogle Scholar
  86. Zhang J, Wu Y, Xing M, Leghari SAK, Sajjad S (2010) Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ Sci 3(6):715–726.  https://doi.org/10.1039/b927575d CrossRefGoogle Scholar
  87. Zheng X, Shen Z-P, Shi L, Cheng R, Yuan D-H (2017) Photocatalytic membrane reactors (PMRs) in water treatment: configurations and influencing factors. Catalysts 7(8):224/221–224/230.  https://doi.org/10.3390/catal7080224 CrossRefGoogle Scholar
  88. Zinoviev S, Mueller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, … Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3(10):1106–1133.  https://doi.org/10.1002/cssc.201000052

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giuseppina Iervolino
    • 1
  • Vincenzo Vaiano
    • 1
  • Paolo Ciambelli
    • 1
    Email author
  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations