Advertisement

Novelty in Designing of Photocatalysts for Water Splitting and CO2 Reduction

  • Santanu Sarkar
  • Shubhrajit Sarkar
  • Chiranjib BhattacharjeeEmail author
  • Supriya Sarkar
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 31)

Abstract

The photocatalytic CO2 reduction and water splitting in the presence of solar illumination are very attractive in the current decade for production of alternative fuel in terms of hydrocarbon and hydrogen. The present chapter has highlighted the method of synthesis of photocatalyst and their possible modification for performance enhancement in the mentioned area. It also includes the scope of opportunity for further development of the present methodology to commercialize in the near future.

Keywords

CO2 photoreduction Water splitting Oxides Synthesis of oxides Bandgap engineering 

References

  1. Abe R, Higashi M, Domen K (2010) Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J Am Chem Soc 132:11828–11829.  https://doi.org/10.1021/ja1016552 CrossRefGoogle Scholar
  2. Ai G, Sun WT, Gao XF, Zhang YL, Peng LM (2011) Hybrid CdSe/TiO2 nanowire photoelectrodes: fabrication and photoelectric performance. J Mater Chem 21:8749–8755.  https://doi.org/10.1039/C0JM03867A CrossRefGoogle Scholar
  3. Albuquerque AR, Bruix A, dos Santos IMG, Sambrano JR, Illas F (2014) DFT study on Ce-doped anatase TiO2: nature of Ce3+ and Ti3+ centers triggered by oxygen vacancy formation. J Phys Chem C 118:9677–9689.  https://doi.org/10.1021/jp501757f CrossRefGoogle Scholar
  4. Allam NK, Shaheen BS, Hafez AM (2014) Layered tantalum oxynitride nanorod array carpets for efficient photoelectrochemical conversion of solar energy: experimental and DFT insights. ACS Appl Mater Interfaces 6:4609–4615.  https://doi.org/10.1021/am500286n CrossRefGoogle Scholar
  5. Antoniadou M, Sfaelou S, Lianos P (2014) Quantum dot sensitized titania for photo-fuel-cell and for water splitting operation in the presence of sacrificial agents. Chem Eng J 254:45–251.  https://doi.org/10.1016/j.cej.2014.05.106. CrossRefGoogle Scholar
  6. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271.  https://doi.org/10.1126/science.1061051 CrossRefGoogle Scholar
  7. Ashley AE, Thompson AL, O’Hare D (2009) Non-metal-mediated homogeneous hydrogenation CO2 to CH3OH. Angew Chem 121:10023–10027.  https://doi.org/10.1002/anie.200905466| CrossRefGoogle Scholar
  8. Beley M, Collin J-P, Ruppert R, Sauvage J-P (1984) Nickel (II)-cyclam: an extremely selective electrocatalyst for reduction of CO2 in water. J Chem Soc Chem Commun 19:1315–1316CrossRefGoogle Scholar
  9. Bin AR, Yusoff M, Jang J (2016) Highly efficient photoelectrochemical water splitting by a hybrid tandem perovskite solar cell. Chem Commun 52:5824–5827.  https://doi.org/10.1039/C6CC01249C CrossRefGoogle Scholar
  10. Blajeni B, Halmann M, Manassen J (1983) Electrochemical measurements on the photoelectrochemical reduction of aqueous carbon-dioxide on p-gallium phosphide and p-gallium arsenide semiconductor electrodes. Sol Energ Mater 8:425–440.  https://doi.org/10.1016/0165-1633(83)90007-2 CrossRefGoogle Scholar
  11. Boerio-Goates J, Smith SJ, Liu SF, Lang BE, Li GS, Woodfield BF, Navrotsky A (2013) Characterization of surface defect sites on bulk and nanophase anatase and rutile TiO2 by low-temperature specific heat. J Phys Chem C 117(9):4544–4550.  https://doi.org/10.1021/jp310993w CrossRefGoogle Scholar
  12. Bonin J, Chaussemier M, Robert M, Routier M (2014) Homogeneous photocatalytic reduction of CO2 to CO using iron (0) porphyrin catalysts: mechanism and intrinsic limitations. Chem Cat Chem 6:3200–3207.  https://doi.org/10.1002/cctc.201402515 CrossRefGoogle Scholar
  13. Borgarello E, Kiwi J, Gratzel M, Pelizzetti E, Visca M (1982) Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc 104:2996–3002.  https://doi.org/10.1021/ja00375a010 CrossRefGoogle Scholar
  14. Brillet J, Yum JH, Cornuz M, Hisatomi T, Solarska R, Augustynski J, Graetzel M, Sivul K (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Photonics 6:824–828. http://nature.com/articles/nphoton.2012.265 CrossRefGoogle Scholar
  15. Bumajdad A, Madkour M (2014) Understanding the superior photocatalytic activity of noble metals modified Titania under UV and visible light irradiation. Phys Chem Chem Phys 16:7146–7158.  https://doi.org/10.1039/C3CP54411G CrossRefGoogle Scholar
  16. Caccamo L, Hartmann J, Fabrega C, Estrade S, Lilienkamp G, Prades JD, Hoffmann MWG, Ledig J, Wagner A, Wang X, Lopez-Conesa L, Peiro F, Rebled JM, Wehmann HH, Daum W, Shen H, Waag A (2014) Band engineered epitaxial 3D GaN-InGaN core–shell rod arrays as an advanced photoanode for visible-light-driven water splitting. ACS Appl Mater Interface 6:2235–2240.  https://doi.org/10.1021/am4058937 CrossRefGoogle Scholar
  17. Cai H, Yang Q, Hu ZQ, Duan ZH, You QH, Sun J, Xu N, Wu JD (2014) Enhanced photoelectrochemical activity of vertically aligned ZnO-coated TiO2 nano-tubes. Appl Phys Lett 104:053114.  https://doi.org/10.1063/1.4863852 CrossRefGoogle Scholar
  18. Cao SW, Yin Z, Barber J, Boey FYC, Loo SCJ, Xue C (2012) Preparation of Au–BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts. ACS Appl Mater Interfaces 4:418–423.  https://doi.org/10.1021/am201481b CrossRefGoogle Scholar
  19. Cao SW, Yuan YP, Fang J, Shahjamali MM, Boey FYC, Barber J, Loo SCJ, Xue C (2013) In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrog Energy 38:1258–1266.  https://doi.org/10.1016/j.ijhydene.2012.10.116 CrossRefGoogle Scholar
  20. Caruntu D, Rostamzadeh T, Costanzo T, Salemizadeh Parizi S, Caruntu G (2015) Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals. Nanoscale 7:12955–12969.  https://doi.org/10.1039/C5NR00737B CrossRefGoogle Scholar
  21. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959.  https://doi.org/10.1021/cr0500535 CrossRefGoogle Scholar
  22. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570.  https://doi.org/10.1021/cr1001645 CrossRefGoogle Scholar
  23. Chen JJ, Wu JCS, Wu PC, Tsai DP (2011a) Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting. J Phys Chem C 115:210–216.  https://doi.org/10.1021/jp1074048 CrossRefGoogle Scholar
  24. Chen X, Liu L, Yu PY, Mao SS (2011b) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750.  https://doi.org/10.1126/science.1200448 CrossRefGoogle Scholar
  25. Chen HM, Chen CK, Liu RS, Zhang L, Zhang LJ, Wilkinson DP (2012a) Nano- architecture and material designs for water splitting photoelectrodes. Chem Soc Rev 41:5654–5671.  https://doi.org/10.1039/C2CS35019J CrossRefGoogle Scholar
  26. Chen XB, Li C, Graetzel M, Kostecki R, Mao SS (2012b) Nanomaterials for renewable energy production and storage. Chem Rev Soc 41:7909–7937.  https://doi.org/10.1039/C2CS35230C CrossRefGoogle Scholar
  27. Chen HC, Huang CW, Wu JCS, Lin ST (2012c) Theoretical investigation of the metal-doped SrTiO3 photocatalysts for water splitting. J Phys Chem C 116:7897–7903.  https://doi.org/10.1021/jp300910e CrossRefGoogle Scholar
  28. Chen Y, Chuang C-H, Qin Z, Shen S, Doane T, Burda C (2017) Electron-transfer dependent photocatalytic hydrogen generation over cross-linked CdSe/TiO2 type-II heterostructure. Nanotechnology 28:084002.  https://doi.org/10.1088/1361-6528/aa5642/meta CrossRefGoogle Scholar
  29. Cheng NY, Tian JQ, Liu Q, Ge CJ, Qusti AH, Asiri AM, Al-Youbi AO, Sun XP (2013) Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photo-catalytic synthesis and application toward the degradation of organic pollutants. ACS Appl Mater Interface 5:6815–6819.  https://doi.org/10.1021/am401802r CrossRefGoogle Scholar
  30. Cherevan AS, Gebhardt P, Shearer CJ, Matsukawa M, Domen K, Eder D (2014) Interface engineering in nanocarbon-Ta2O5 hybrid photocatalysts. Energy Environ Sci 7:791–796.  https://doi.org/10.1039/C3EE42558D CrossRefGoogle Scholar
  31. Chowdhury P, Gomaa H, Ray AK (2011) Factorial design analysis for dye-sensitized hydrogen generation from water. Int J Hydro Energy 36:13442–13451.  https://doi.org/10.1016/j.ijhydene.2011.07.093 CrossRefGoogle Scholar
  32. Chu S, Wang CC, Feng JY, Wang Y, Zou ZG (2014) Melem: a metal-free unit for photocatalytic hydrogen evolution. Int J Hydrog Energy 39:13519–13526.  https://doi.org/10.1016/j.ijhydene.2014.02.052 CrossRefGoogle Scholar
  33. Chu S, Li W, Yan Y, Hamann T, Shih I, Wang D, Mi Z (2017) Roadmap on solar water splitting: current status and future prospects. Nano Futures 1(2):022001.  https://doi.org/10.1088/2399-1984/aa88a1 CrossRefGoogle Scholar
  34. Clarizia L, Spasiano D, Di Somma I, Marotta R, Andreozzi R, Dionysiou DD (2014) Copper modified-TiO2 catalysts for hydrogen generation through photo-reforming of organics. A short review. Int J Hydrog Energy 39(30):16812–16831.  https://doi.org/10.1016/j.ijhydene.2014.08.037 CrossRefGoogle Scholar
  35. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Transformation of carbon dioxide with homogeneous transition – metal catalysts: a molecular solution to a global challenge? Angew Chem Int Ed 50:8510–8537.  https://doi.org/10.1002/anie.201102010 CrossRefGoogle Scholar
  36. Collin J, Sauvage J (1989) Electrochemical reduction of carbon dioxide mediated by molecular catalysts. Coord Chem Rev 93:245–268.  https://doi.org/10.1016/0010-8545(89)80018-9 CrossRefGoogle Scholar
  37. Das C, Roy P, Yang M, Jha H, Schmuki P (2011) Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting. Nanoscale 3:3094–3096.  https://doi.org/10.1039/C1NR10539F CrossRefGoogle Scholar
  38. Dashora A, Patel N, Kothari DC, Ahuja BL, Miotello A (2014) Formation of an intermediate band in the energy gap of TiO2 by Cu–N-codoping: first principles study and experimental evidence. Sol Energy Mater Sol Cells 125:120–126.  https://doi.org/10.1016/j.solmat.2014.02.032 CrossRefGoogle Scholar
  39. Dholam R, Patel N, Santini A, Miotello A (2010) Efficient indium tin oxide/Cr-doped- TiO2 multilayer thin films for H2 production by photocatalytic water-splitting. Int J Hydro Energy 25:9581–9590.  https://doi.org/10.1016/j.ijhydene.2010.06.097 CrossRefGoogle Scholar
  40. Do JY, Im Y, Kwak BS, Park S-M, Kang M (2016) Preparation of basalt fiber@ perovskite PbTiO3 core–shell composites and their effects on CH4 production from CO2 photoreduction. Ceram Int 42:5942–5951.  https://doi.org/10.1016/j.ceramint.2015.12.142 CrossRefGoogle Scholar
  41. Dong W, Li X, Yu J, Guo W, Li B, Tan L, Li C, Shi J, Wang G (2012) Porous SrTiO3 spheres with enhanced photocatalytic performance. Mater Lett 67:131–134.  https://doi.org/10.1016/j.matlet.2011.09.045 CrossRefGoogle Scholar
  42. Ellis AB, Kaiser SW, Bolts JM, Wrighton MS (1977) Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing poly- chalcogenide electrolytes. J Am Chem Soc 99:2839–2848.  https://doi.org/10.1021/ja00451a001 CrossRefGoogle Scholar
  43. Feng LL, Zou YC, Li CG, Gao S, Zhou LJ, Sun QS, Fan MH, Wang HJ, Wang DJ, Li GD, Zou XX (2014) Nanoporous sulfur-doped graphitic carbon nitride microrods: a durable catalyst for visible-light-driven H2 evolution. Int J Hydrog Energy 39(28):15373–15379.  https://doi.org/10.1016/j.ijhydene.2014.07.160 CrossRefGoogle Scholar
  44. Fresno F, Jana P, Renones P, Coronado JM, Serrano DP, de la Pena O’Shea VA (2017) CO2 reduction over NaNbO3 and NaTaO3 perovskite photocatalysts. Photochem Photobiol Sci 16:17–23.  https://doi.org/10.1039/C6PP00235H CrossRefGoogle Scholar
  45. Froehlich JD, Kubiak CP (2012) Homogeneous CO2 reduction by Ni (cyclam) at a glassy carbon electrode. Inorg Chem 51:3932–3934.  https://doi.org/10.1021/ic3001619 CrossRefGoogle Scholar
  46. Fujimoto I, Wang NN, Saito R, Miseki Y, Gunji T, Sayama K (2014) WO3/BiVO4 composite photoelectrode prepared by improved auto-combustion method for highly efficient water splitting. Int J Hydrog Energy 39:2454–2461.  https://doi.org/10.1016/j.ijhydene.2013.08.114 CrossRefGoogle Scholar
  47. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semi-conductor electrode. Nature 238:37–38.  https://doi.org/10.1038/238037a0 CrossRefGoogle Scholar
  48. Goncalves RV, Migowski P, Wender H, Eberhardt D, Weibel DE, Sonaglio FC, Zapata MJM, Dupont J, Feil AF, Teixeira SR (2012) Ta2O5 nanotubes obtained by anodization: effect of thermal treatment on the photocatalytic activity for hydrogen production. J Phys Chem C 116(26):14022–14030.  https://doi.org/10.1021/jp303273q CrossRefGoogle Scholar
  49. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344.  https://doi.org/10.1038/35104607 CrossRefGoogle Scholar
  50. Guo ML, Zhang XD, Liang CT, Jia GZ (2010) Mechanism of visible photoactivity of F-doped TiO2. Chin Phys Lett 27:057103.  https://doi.org/10.1088/0256-307X/27/5/057103/meta. CrossRefGoogle Scholar
  51. Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275:115–116.  https://doi.org/10.1038/275115a0 CrossRefGoogle Scholar
  52. Hemminger JC, Carr R, Somorjai GA (1978) The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane. Chem Phys Lett 57:100–104.  https://doi.org/10.1016/0009-2614(78)80359-5 CrossRefGoogle Scholar
  53. Higashi M, Domen K, Abe R (2011) Fabrication of efficient TaON and Ta3N5 photo-anodes for water splitting under visible light irradiation. Energy Environ Sci 4:4138–4147.  https://doi.org/10.1039/C1EE01878G CrossRefGoogle Scholar
  54. Higashi M, Domen K, Abe R (2012) Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J Am Chem Soc 134:6968–6971.  https://doi.org/10.1021/ja302059g CrossRefGoogle Scholar
  55. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535.  https://doi.org/10.1039/C3CS60378D CrossRefGoogle Scholar
  56. Hori Y, Kikuchi K, Suzuki S (1985) Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogen carbonate solution. Chem Lett 14:1695–1698.  https://doi.org/10.1246/cl.1985.1695 CrossRefGoogle Scholar
  57. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39:1833–1839.  https://doi.org/10.1016/0013-4686(94)85172-7 CrossRefGoogle Scholar
  58. Hou Y, Zuo F, Dagg A, Feng PY (2012a) Visible light-driven α-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett 12:6464–6473.  https://doi.org/10.1021/nl303961c CrossRefGoogle Scholar
  59. Hou J, Wang Z, Kan WB, Jiao SQ, Zhu HM, Kumar RV (2012b) Efficient visible-light-driven photocatalytic hydrogen production using CdS@TaON core–shell composites coupled with graphene oxide nanosheets. J Mater Chem 22:7291–7299.  https://doi.org/10.1039/C2JM15791H CrossRefGoogle Scholar
  60. Hou J, Cao S, Wu Y, Gao Z, Liang F, Sun Y, Lin Z, Sun L (2017) Inorganic colloidal Perovskite quantum dots for robust solar CO2 reduction. Chem-Eur J 23:9481–9485.  https://doi.org/10.1002/chem.201702237| CrossRefGoogle Scholar
  61. Hsu CH, Chen CH, Chen DH (2013) Decoration of PbS nanoparticles on Al-doped ZnO nanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting. J Alloy Compd 554:45–50.  https://doi.org/10.1016/j.jallcom.2012.11.192 CrossRefGoogle Scholar
  62. Hwang H, Lewis JP (2005) Effects of dopant states on photoactivity in carbon-doped TiO2. J Phys Conden Matter 17:L209–L213.  https://doi.org/10.1088/0953-8984/17/21/L01 CrossRefGoogle Scholar
  63. Iizuka K, Wato T, Miseki Y, Saito K, Kudo A (2011) Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A= Ca, Sr, and Ba) using water as a reducing reagent. J Am Chem Soc 133:20863–20868.  https://doi.org/10.1021/ja207586e CrossRefGoogle Scholar
  64. In S, Orlov A, Berg R, Garcia F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J Am Chem Soc 129:13790–13791.  https://doi.org/10.1021/ja0749237 CrossRefGoogle Scholar
  65. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638.  https://doi.org/10.1038/277637a0 CrossRefGoogle Scholar
  66. Inturia SNR, Boningaria T, Suidanb M, Smirniotis PG (2014) Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl Catal B 144:333–342.  https://doi.org/10.1016/j.apcatb.2013.07.032 CrossRefGoogle Scholar
  67. Isimjan TT, Ruby AE, Rohani S, Ray AK (2010) The fabrication of highly ordered and visible-light-responsive Fe–C–N codoped TiO2 nanotubes. Nanotechnology 21:055706.  https://doi.org/10.1088/0957-4484/21/5/055706 CrossRefGoogle Scholar
  68. Jacobsson TJ, Fjällström V, Sahlberg M, Edoff M, Edvinsson T (2013) A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ Sci 6:3676–3683.  https://doi.org/10.1039/C3EE42519C CrossRefGoogle Scholar
  69. Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92:2557–2567.  https://doi.org/10.1016/j.cherd.2014.03.005 CrossRefGoogle Scholar
  70. Jaiswal R, Patel N, Kothari DC, Miotello A (2012) Improved visible light photo-catalytic activity of TiO2 co-doped with vanadium and nitrogen. Appl Catal B 126:47–54.  https://doi.org/10.1016/j.apcatb.2012.06.030 CrossRefGoogle Scholar
  71. Jia L, Li J, Fang W, Song H, Li Q, Tang Y (2009a) Visible-light-induced photocatalyst based on C-doped LaCoO3 synthesized by novel microorganism chelate method. Catal Commun 10:1230–1234.  https://doi.org/10.1016/j.catcom.2009.01.025 CrossRefGoogle Scholar
  72. Jia L, Li J, Fang W (2009b) Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide. Catal Commun 11:87–90.  https://doi.org/10.1016/j.catcom.2009.08.016 CrossRefGoogle Scholar
  73. Kar P, Farsinezhad S, Zhang X, Shankar K (2014) Anodic Cu2S and CuS nanorod and nanowall arrays: preparation, properties and application in CO2 photoreduction. Nanoscale 6:14305–14318.  https://doi.org/10.1039/C4NR05371K CrossRefGoogle Scholar
  74. Kar P, Zhang Y, Farsinezhad S, Mohammadpour A, Wiltshire BD, Sharma H, Shankar K (2015) Rutile phase n-and p-type anodic titania nanotube arrays with square-shaped pore morphologies. Chem Commun 51:7816–7819.  https://doi.org/10.1039/C5CC01829C CrossRefGoogle Scholar
  75. Kar P, Farsinezhad S, Mahdi N, Zhang Y, Obuekwe U, Sharma H, Shen J, Semagina N, Shankar K (2016) Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res 9:3478–3493.  https://doi.org/10.1007/s12274-016-1225-4 CrossRefGoogle Scholar
  76. Kargar A, Jing Y, Kim SJ, Riley CT, Pan XQ, Wang DL (2013) ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 7:11112–11120.  https://doi.org/10.1021/nn404838n CrossRefGoogle Scholar
  77. Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106:5029–5034.  https://doi.org/10.1021/jp0255482 CrossRefGoogle Scholar
  78. Khan SU, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245.  https://doi.org/10.1126/science.1075035 CrossRefGoogle Scholar
  79. Khan M, Xu J, Chen N, Cao W (2012) Electronic and optical properties of pure and Mo doped anatase TiO2 using GGA and GGA+U calculations. Physica B 407:3610–3616.  https://doi.org/10.1016/j.physb.2012.05.037 CrossRefGoogle Scholar
  80. Khaselev O, Turner J (1998) A monolithic photovoltaic–photoelectrochemical device for hydrogen production via water splitting. Science 280:425–427.  https://doi.org/10.1126/science.280.5362.425. CrossRefGoogle Scholar
  81. Kibria MG, Nguyen HPT, Cui K, Zhao SR, Liu DP, Guo H, Trudeau ML, Paradis S, Hakima AR, Mi ZT (2013) One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures. ACS Nano 7:7886–7893.  https://doi.org/10.1021/nn4028823 CrossRefGoogle Scholar
  82. Kida T, Minami Y, Guan G, Nagand M, Akiyama M, Yoshida A (2006) Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation. J Mater Sci 41:3527–3534.  https://doi.org/10.1007/s10853-005-5655-8 CrossRefGoogle Scholar
  83. Kim HY, Lee HM, Pala RGS, Shapovalov V, Metiu H (2008) CO oxidation by rutile TiO2 (110) doped with V, W, Cr, Mo, and Mn. J Phys Chem C 112:12398–12408.  https://doi.org/10.1021/jp802296g CrossRefGoogle Scholar
  84. Kong XY, Tan WL, Ng B-J, Chai S-P, Mohamed AR (2017) Harnessing Vis–NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano Res 10:1720–1731.  https://doi.org/10.1007/s12274-017-1435-4 CrossRefGoogle Scholar
  85. Kroke E, Schwarz M (2004) Novel group 14 nitrides. Coord Chem Rev 248:493–532.  https://doi.org/10.1016/j.ccr.2004.02.001 CrossRefGoogle Scholar
  86. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R, Abiade J, Yarin AL, Salehi-Khojin A (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4:2819.  https://doi.org/10.1038/ncomms3819 CrossRefGoogle Scholar
  87. Kumari B, Sharma S, Singh N, Verma A, Satsangi VR, Dass S, Shrivastav R (2014) ZnO thin films, surface embedded with biologically derived Ag/Au nanoparticles, for efficient photoelectrochemical splitting of water. Int J Hydrog Energy 39(32):18216–18229.  https://doi.org/10.1016/j.ijhydene.2014.09.025 CrossRefGoogle Scholar
  88. Kwak BS, Kang M (2015) Photocatalytic reduction of CO2 with H2O using perovskite CaxTiyO3. Appl Surf Sci 337:138–144.  https://doi.org/10.1016/j.apsusc.2015.02.078 CrossRefGoogle Scholar
  89. Laitar DS, Müller P, Sadighi JP (2005) Efficient homogeneous catalysis in the reduction of CO2 to CO J. Am Chem Soc 127:17196–17197.  https://doi.org/10.1002/cctc.201402515 CrossRefGoogle Scholar
  90. Le M, Ren M, Zhang Z, Sprunger PT, Kurtz RL, Flake JC (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158:E45–EE9.  https://doi.org/10.1149/1.3561636 CrossRefGoogle Scholar
  91. Lee Y-L, Chi C-F, Liau S-Y (2010) CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem Mater 22:922–927.  https://doi.org/10.1021/cm901762h CrossRefGoogle Scholar
  92. Li P, Ouyang S, Xi G, Kako T, Ye J (2012) The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3. J Phys Chem C 116:7621–7628.  https://doi.org/10.1021/jp210106b CrossRefGoogle Scholar
  93. Li ZS, Luo WJ, Zhang ML, Feng JY, Zou ZG (2013a) Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 6:347–370.  https://doi.org/10.1039/C2EE22618A CrossRefGoogle Scholar
  94. Li YK, Yu HM, Zhang CK, Fu L, Li GF, Shao ZG, Yi BL (2013b) Enhancement of photoelectrochemical response by Au modified in TiO2 nanorods. Int J Hydrog Energy 38:13023–13030.  https://doi.org/10.1016/j.ijhydene.2013.03.122 CrossRefGoogle Scholar
  95. Li Y, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K (2013c) Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater 25:125–131.  https://doi.org/10.1002/adma.201202582 CrossRefGoogle Scholar
  96. Li TT, Li XY, Zhao QD, Teng W (2014a) Preparation of CuInS2/TiO2 nanotube heterojunction arrays electrode and investigation of its photoelectrochemical properties. Mater Res Bull 59:227–233.  https://doi.org/10.1016/j.materresbull.2014.07.031 CrossRefGoogle Scholar
  97. Li Q, Sun X, Lozano K, Mao YB (2014b) Facile and scalable synthesis of “Caterpillar-like” ZnO nanostructures with enhanced photoelectrochemical water splitting effect. J Phys Chem C 118(25):13467–13475.  https://doi.org/10.1021/jp503155c CrossRefGoogle Scholar
  98. Li S, Dong G, Hailili R, Yang L, Li Y, Wang F, Zeng Y, Wang C (2016) Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl Catal B-38 Environ 190:26–35.  https://doi.org/10.1016/j.apcatb.2016.03.004 CrossRefGoogle Scholar
  99. Li N, Chen X, Ong W-J, MacFarlane DR, Zhao X, Cheetham AK, Sun C (2017) Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 11(11):10825–10833.  https://doi.org/10.1021/acsnano.7b03738 CrossRefGoogle Scholar
  100. Liang L, Lei F, Gao S, Sun Y, Jiao X, Wu J, Qamar S, Xie Y (2015) Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew Chem Int Ed 54:13971–13974.  https://doi.org/10.1002/anie.201506966| CrossRefGoogle Scholar
  101. Liao GZ, Chen S, Quan X, Yu HT, Zhao HM (2012) Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J Mater Chem 22:2721–2726.  https://doi.org/10.1039/C1JM13490F CrossRefGoogle Scholar
  102. Liew SL, Zhang Z, Goh TWG, Subramanian GS, Seng HLD, Hor TSA, Luo HK, Chi DZ (2014) Yb-doped WO3 photocatalysts for water oxidation with visible light. Int J Hydrog Energy 39(9):4291–4298.  https://doi.org/10.1016/j.ijhydene.2013.12.204 CrossRefGoogle Scholar
  103. Lim YK, Koh E, Zhang YW, Pan H (2013) Ab initio design of GaN-based photo-catalyst: ZnO-codoped GaN nanotubes. J Power Sources 232:323–331.  https://doi.org/10.1016/j.jpowsour.2013.01.066 CrossRefGoogle Scholar
  104. Lin YL, Yuan GB, Liu R, Zhou S, Sheehan SW, Wang DW (2011) Semiconductor nanostructure-based photoelectrochemical water splitting: a brief review. Chem Phys Lett 507:209–215.  https://doi.org/10.1016/j.cplett.2011.03.074 CrossRefGoogle Scholar
  105. Liu M, Wang JG (2009) Study on mechanical properties and blood compatibility of carbon nitride film deposited on NiTi alloy. J Inorg Mater 24:491–496.  https://doi.org/10.3724/SP.J.1077.2009.00491 CrossRefGoogle Scholar
  106. Liu G, Niu P, Sun CH, Smith SC, Chen ZG, Lu GQ, Cheng HM (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648.  https://doi.org/10.1021/ja103798k CrossRefGoogle Scholar
  107. Liu XE, Wang FY, Wang Q (2012) Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys Chem Chem Phys 14:7894–7911.  https://doi.org/10.1039/C2CP40976C CrossRefGoogle Scholar
  108. Liu Q, Wu D, Zhou Y, Su H, Wang R, Zhang C, Yan S, Xiao M, Zou Z (2014a) Single-crystalline, ultrathin ZnGa2O4 nanosheet scaffolds to promote photocatalytic activity in CO2 reduction into methane. ACS Appl Mater Inter 6:2356–2361.  https://doi.org/10.1021/am404572g CrossRefGoogle Scholar
  109. Liu J, Yu XL, Liu QY, Liu RJ, Shang XK, Zhang SS, Li WH, Zheng WQ, Zhang GJ, Cao HB, Gu ZJ (2014b) Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectron chemical water splitting. Appl Catal B 158–159:296–300.  https://doi.org/10.1016/j.apcatb.2014.04.032 CrossRefGoogle Scholar
  110. Low IM, Albetran H, Prida VM, Vega V, Manurung P, Ionescu M (2013) A comparative study on crystallization behavior, phase stability, and binding energy in pure and Cr-doped TiO2 nanotubes. J Mater Res 28:304–312.  https://doi.org/10.1557/jmr.2012.275 CrossRefGoogle Scholar
  111. Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345:1593.  https://doi.org/10.1126/science.1258307 CrossRefGoogle Scholar
  112. Lv R, Wang T, Su FL, Zhang P, Li CJ, Gong JL (2014) Facile synthesis of ZnO nano-pencil arrays for photoelectrochemical water splitting. Nano Energy 7:143–150.  https://doi.org/10.1016/j.electacta.2013.12.095. CrossRefGoogle Scholar
  113. Ma ZQ, Pan H, Wang Z, Wong PK (2015) Effects of non-metal dopants and defects on electronic properties of barium titanate as photocatalyst. Int J Hydrog Energy 40:4766–4776.  https://doi.org/10.1016/j.ijhydene.2015.02.002 CrossRefGoogle Scholar
  114. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water split- ting. J Am Chem Soc 127:8286–8287.  https://doi.org/10.1021/ja0518777 CrossRefGoogle Scholar
  115. Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868.  https://doi.org/10.1021/ja1009025 CrossRefGoogle Scholar
  116. Maina JW, Pozo-Gonzalo C, Kong L, Schutz J, Hill M, Dumee LF (2017) Metal organic framework based catalysts for CO2 conversion. Mater Horiz 4:345–361.  https://doi.org/10.1039/C6MH00484A CrossRefGoogle Scholar
  117. Mao A, Shin K, Kim JK, Wang DH, Han GY, Park JH (2011) Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes. ACS Appl Mater Interfaces 3:1852–1858.  https://doi.org/10.1021/am200407t CrossRefGoogle Scholar
  118. Mao XC, Lang XF, Wang ZQ, Hao QQ, Wen B, Ren ZF, Dai DX, Zhou CY, Liu LM, Yang XM (2013) Band-gap states of TiO2(110): major contribution from surface defects. J Phys Chem Lett 4:3839–3844.  https://doi.org/10.1021/jz402053p CrossRefGoogle Scholar
  119. Mao L, Zhu SM, Ma J, Shi D, Chen YX, Chen ZX, Yin C, Li Y, Zhang D (2014) Superior H2 production by hydrophilic ultrafine Ta2O5 engineered covalently on graphene. Nanotechnology 25:215401.  https://doi.org/10.1088/0957-4484/25/21/215401 CrossRefGoogle Scholar
  120. Masanobu H, Abe R, Takata T, Domen K (2009) Photocatalytic overall water splitting under visible light using ATaO2N (A= Ca, Sr, Ba) and WO3 in a IO3 /I shuttle redox mediated system. Chem Mater 21:1543–1549.  https://doi.org/10.1021/cm803145n CrossRefGoogle Scholar
  121. Moghtada A, Ashiri R (2016) Enhancing the formation of tetragonal phase in perovskite nanocrystals using an ultrasound assisted wet chemical method. Ultrason Sonochem 33:141–149.  https://doi.org/10.1016/j.ultsonch.2016.05.002 CrossRefGoogle Scholar
  122. Mömming CM, Otten E, Kehr G, Fröhlich R, Grimme S, Stephan DW, Erker G (2009) Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. Angew Chem Int Ed 48:6643–6646.  https://doi.org/10.1002/anie.200901636 CrossRefGoogle Scholar
  123. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Solar Cells 90:2011–2075.  https://doi.org/10.1016/j.solmat.2006.04.007 CrossRefGoogle Scholar
  124. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994.  https://doi.org/10.1021/ar9001679 CrossRefGoogle Scholar
  125. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Santo VD (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603.  https://doi.org/10.1021/ja3012676 CrossRefGoogle Scholar
  126. Nashed R, Szymanski P, El-Sayed MA, Allam NK (2014) Self-assembled nanostructured photoanodes with staggered bandgap for efficient solar energy conversion. ACS Nano 8:4915–4923.  https://doi.org/10.1021/nn5009066 CrossRefGoogle Scholar
  127. Nath RK, Zain MFM, Kadhum AAH (2012) New material LiNbO3 for photocatalytically improvement of indoor air – an overview. Adv Nat Appl Sci 6:1030–1035. https://ukm.pure.elsevier.com/en/publications/new-material-linbosub3sub-for-photocatalytically-improvement-of-i Google Scholar
  128. Navalón S, Dhakshinamoorthy A, Álvaro M, Garcia H (2013) Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. Chem Sus Chem 6:562–577.  https://doi.org/10.1002/cssc.201200670| CrossRefGoogle Scholar
  129. Navarro RM, Del Valle F, Villoria de la Mano JA, Alvarez-Galván MC, Fierro JLG (2009) Photocatalytic water splitting under visible light: concept and catalysts development. Adv Chem Eng 36:111–143.  https://doi.org/10.1016/S0065-2377(09)00404-9. CrossRefGoogle Scholar
  130. Navarro RM, Alvarez-Galván MC, Villoria de la Mano JA, Al-Zahrani SM, Fierro JLG (2010) A framework for visible-light water splitting. Energy Environ Sci 3:1865–1882.  https://doi.org/10.1039/C001123A CrossRefGoogle Scholar
  131. Ng KH, Minggu LJ, Kassim MB (2013) Gallium-doped tungsten trioxide thin film photoelectrodes for photoelectrochemical water splitting. Int J Hydrog Energy 38:9585–9591.  https://doi.org/10.1016/j.ijhydene.2013.02.144 CrossRefGoogle Scholar
  132. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425.  https://doi.org/10.1016/j.rser.2005.01.009 CrossRefGoogle Scholar
  133. Niishiro R, Kato H, Kudo A (2005) Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys Chem Chem Phys 7:2241–2245.  https://doi.org/10.1039/B502147B CrossRefGoogle Scholar
  134. Nowontny J, Bak T, Nowontny MK (2006) Defect disorder of titanium dioxide. J Phys Chem B 110:21560–21567.  https://doi.org/10.1021/jp063700k CrossRefGoogle Scholar
  135. Nowontny MK, Sheppard LR, Bak T, Nowontny J (2008) Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J Phys Chem C 112:5275–5300.  https://doi.org/10.1021/jp077275m CrossRefGoogle Scholar
  136. Ohmori T, Takahashi H, Mametsuka H, Suzuki E (2000) Photocatalytic oxygen evolution on α-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent. Phys Chem Chem Phys 2:3519–3522.  https://doi.org/10.1039/B003977M CrossRefGoogle Scholar
  137. Ong W-J (2017) 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter? Adv Mater Res-Switz 4:1–10.  https://doi.org/10.3389/fmats.2017.00011 CrossRefGoogle Scholar
  138. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329.  https://doi.org/10.1021/acs.chemrev.6b00075 CrossRefGoogle Scholar
  139. Ong W-J, Putri LK, Tan Y-C, Tan L-L, Li N, Ng YH, Wen X, Chai S-P (2017) Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study. Nano Res 10:1673–1696.  https://doi.org/10.1007/s12274-016-1391-4 CrossRefGoogle Scholar
  140. Pan H (2015) Bandgap engineering of oxygen-rich TiO2+x for photocatalyst with enhanced visible-light photocatalytic ability. J Mater Sci 50:4324–4329.  https://doi.org/10.1007/s10853-015-8984-2 CrossRefGoogle Scholar
  141. Pan H, Zhang YW (2012) GaN-ZnO superlattice nanowires as photocatalyst for hydrogen generation – a first-principles study on electronic and magnetic properties. Nano Energy 1:488–493.  https://doi.org/10.1016/j.nanoen.2012.03.001 CrossRefGoogle Scholar
  142. Pan H, Guo B, Zhang Z (2009a) Phase-dependent photocatalytic ability of TiO2: a first-principles study. J Chem Theory Comput 5:3074–3078.  https://doi.org/10.1021/ct9002724 CrossRefGoogle Scholar
  143. Pan H, Qiu XF, Ivanovc IN, Meyer HM, Wang W, Zhu WG, Paranthaman MP, Zhang ZY, Eres G, Gu BH (2009b) Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Appl Catal B 93:90–95.  https://doi.org/10.1016/j.apcatb.2009.09.016 CrossRefGoogle Scholar
  144. Pan H, Gu BH, Eres G, Zhang ZY (2010) Ab initio study on non-compensated CrO codoping of GaN for enhanced solar energy conversion. J Chem Phys 132:104501.  https://doi.org/10.1063/1.3337919 CrossRefGoogle Scholar
  145. Pan H, Zhang YW, Shenoy V, Gao HJ (2011) Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. J Phys Chem C 115:12224–12231.  https://doi.org/10.1021/jp202385q CrossRefGoogle Scholar
  146. Pan B, Zhou Y, Su W, Wang X (2017) Self-assembly synthesis of LaPO4 hierarchical hollow spheres with enhanced photocatalytic CO2-reduction performance. Nano Res 10:534–545.  https://doi.org/10.1007/s12274-016-1311-7 CrossRefGoogle Scholar
  147. Pany S, Naik B, Martha S, Parida K (2014) Plasmon induced nano Au particle decorated over S, N-modified TiO2 for exceptional photocatalytic hydrogen evolution under visible light. ACS Appl Mater Interfaces 6(2):839–846.  https://doi.org/10.1021/am403865r CrossRefGoogle Scholar
  148. Parida KM, Reddy KH, Martha S, Das DP, Biswal N (2010) Fabrication of nanocrystalline LaFeO3: an efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. Int J Hydrog Energy 35:12161–12168.  https://doi.org/10.1016/j.ijhydene.2010.08.029 CrossRefGoogle Scholar
  149. Phokha S, Pinitsoontorn S, Maensiri S, Rujirawat S (2014) Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. J Sol-Gel Sci Technol 71:333–341.  https://doi.org/10.1007/s10971-014-3383-8 CrossRefGoogle Scholar
  150. Pinaud B, Vesborg PCK, Jaramillo TF (2012) Effect of film morphology and thickness on charge transport in Ta3N5/Ta photoanodes for solar water splitting. J Phys Chem C 116:15918–15924.  https://doi.org/10.1021/jp3041742 CrossRefGoogle Scholar
  151. Pinaud BA, Vailionis A, Jaramillo TF (2014) Controlling the structural and optical properties of Ta3N5 films through nitridation temperature and the nature of the Ta metal. Chem Mater 26:1576–1582.  https://doi.org/10.1021/cm403482s CrossRefGoogle Scholar
  152. Prevot MS, Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117:17879–17893.  https://doi.org/10.1021/jp405291g CrossRefGoogle Scholar
  153. Pu YC, Wang GM, Chang KD, Ling YC, Lin YK, Fitzmorris BC, Liu CM, Lu XH, Tong YX, Zhang JZ, Hsu YJ, Li Y (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett 13:3817–3823.  https://doi.org/10.1021/nl4018385 CrossRefGoogle Scholar
  154. Rahman QI, Ahmad M, Misra SK, Lohani M (2012) Efficient degradation of methylene blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light. J Nanosci Nanotechnol 12:7181–7186.  https://doi.org/10.1166/jnn.2012.6494 CrossRefGoogle Scholar
  155. Rakowski Dubois M, Dubois DL (2009) Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc Chem Res 42:1974–1982.  https://doi.org/10.1021/ar900110c CrossRefGoogle Scholar
  156. Rani S, Bao N, Roy SC (2014) Solar spectrum photocatalytic conversion of CO2 and water vapor into hydrocarbons using TiO2 nanoparticle membranes. Appl Surf Sci 289:203–208.  https://doi.org/10.1016/j.apsusc.2013.10.135 CrossRefGoogle Scholar
  157. Rao PM, Cai LL, Liu C, Cho IS, Lee CH, Weisse JM, Yang PD, Zheng XL (2014) Simultaneously efficient light absorption and charge separation in WO3/ BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14:1099–1105.  https://doi.org/10.1021/nl500022z CrossRefGoogle Scholar
  158. Rayalu SS, Jose D, Joshi MV, Mangrulkar PA, Shrestha K, Klabunde K (2013) Photo-catalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: enhancement in photocatalytic activity due to SPR effect. Appl Catal B 142:684–692.  https://doi.org/10.1016/j.apcatb.2013.05.057 CrossRefGoogle Scholar
  159. Rechberger F, Niederberger M (2017) Translucent nanoparticle-based aerogel monoliths as 3-dimensional photocatalysts for the selective photoreduction of CO2 to methanol in a continuous flow reactor. Mater Horiz 4:1115–1121.  https://doi.org/10.1039/C7MH00423K CrossRefGoogle Scholar
  160. Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal 5:6696–6706.  https://doi.org/10.1021/acscatal.5b01755 CrossRefGoogle Scholar
  161. Sadanandam G, Lalitha K, Kumari VD, Shankar MV, Subrahmanyam M (2014) Cobalt doped TiO2: a stable and efficient photocatalyst for continuous hydrogen production from glycerol: water mixtures under solar light irradiation. Int J Hydrog Energy 38:9655–9664.  https://doi.org/10.1021/jp810923r. CrossRefGoogle Scholar
  162. Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products—a review and potential future developments. J CO2 Util 5:66–81.  https://doi.org/10.1016/j.jcou.2013.12.005 CrossRefGoogle Scholar
  163. Saito R, Miseki Y, Sayama K (2012) Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem Commun 48:3833–3835.  https://doi.org/10.1039/C2CC30713H CrossRefGoogle Scholar
  164. Savéant J-M (2008) Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chem Rev 108:2348–2378.  https://doi.org/10.1021/cr068079z CrossRefGoogle Scholar
  165. Schreier M, Curvat L, Giordano F, Steier L, Abate A, Zakeeruddin SM, Luo J, Mayer MT, Grätzel M (2015) Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nat Commun 6:7326.  https://doi.org/10.1038/ncomms8326 CrossRefGoogle Scholar
  166. Shao G (2009) Red shift in manganese- and iron-doped TiO2: a DFT+U analysis. J Phys Chem C 113:6800–6808.  https://doi.org/10.1021/jp810923r CrossRefGoogle Scholar
  167. Sharma D, Verma A, Satsangi VR, Shrivastav R, Dass S (2014) Nanostructured SrTiO3 thin films sensitized by Cu2O for photoelectrochemical hydrogen generation. Int J Hydrog Energy 39:4189–4197.  https://doi.org/10.1016/j.ijhydene.2013.12.201 CrossRefGoogle Scholar
  168. Shi WJ, Xiong SJ (2011) Ab initio study on band-gap narrowing in SrTiO3 with Nb–C–Nb codoping. Phys Rev B 84:205210.  https://doi.org/10.1103/PhysRevB.84.205210. CrossRefGoogle Scholar
  169. Shi H, Zou Z (2012) Photophysical and photocatalytic properties of ANbO3 (A= Na, K) photocatalysts. J Phys Chem Solids 73:788–792.  https://doi.org/10.1016/j.jpcs.2012.01.026 CrossRefGoogle Scholar
  170. Shi H, Wang T, Chen J, Zhu C, Ye J, Zou Z (2011) Photoreduction of carbon dioxide over NaNbO3 nanostructured photocatalysts. Catal Lett 141:525–530.  https://doi.org/10.1007/s10562-010-0482-1 CrossRefGoogle Scholar
  171. Shi H, Chen G, Zhang C, Zou Z (2014) Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel. ACS Catal 4:3637–3643.  https://doi.org/10.1021/cs500848f CrossRefGoogle Scholar
  172. Shi H, Zhang C, Zhou C, Chen G (2015) Conversion of CO2 into renewable fuel over Pt-g-C3N4/KNbO3 composite photocatalyst. RSC Adv 5:93615–93622.  https://doi.org/10.1039/C5RA16870H CrossRefGoogle Scholar
  173. Shi J, Zhang D, Zi W, Wang P, Liu SZ (2017a) Recent advances in Photoelectrochemical applications of silicon materials for solar-to-chemicals conversion. ChemSusChem 10:4324–4341.  https://doi.org/10.1002/cssc.201701674 CrossRefGoogle Scholar
  174. Shi R, Waterhouse GI, Zhang T (2017b) Recent progress in photocatalytic CO2 reduction over Perovskite oxides. Solar RRL 1(11).  https://doi.org/10.1002/solr.201700126
  175. Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T (2014) Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal 4:774–780.  https://doi.org/10.1021/cs401208c CrossRefGoogle Scholar
  176. Simakov DS (2017) Renewable synthetic fuels and chemicals from carbon dioxide: fundamentals, catalysis, design considerations and technological challenges. Springer, New York. ISBN 978-3-319-61112-9CrossRefGoogle Scholar
  177. Sobhani-Nasab A, Hosseinpour-Mashkani SM, Salavati-Niasari M, Bagheri S (2015) Controlled synthesis of CoTiO3 nanostructures via two-step sol–gel method in the presence of 1, 3, 5-benzenetricarboxylic acid. J Clust Sci 26:1305–1318.  https://doi.org/10.1007/s10876-014-0814-1 CrossRefGoogle Scholar
  178. Sun Z, Yang Z, Liu H, Wang H, Wu Z (2014) Visible-light CO2 photocatalytic reduction performance of ball-flower-like Bi2WO6 synthesized without organic precursor: effect of post- calcination and water vapor. Appl Surf Sci 315:360–367.  https://doi.org/10.1016/j.apsusc.2014.07.153 CrossRefGoogle Scholar
  179. Takahara Y, Kondo JN, Takata T, Lu D, Domen K (2001) Mesoporous tantalum oxide 1: characterization and photocatalytic activity for the overall water decomposition. Chem Mater 13:1194–1199.  https://doi.org/10.1021/cm000572i CrossRefGoogle Scholar
  180. Takeda H, Cometto C, Ishitani O, Robert M (2017) Electrons, photons, protons and earth abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal 7:70–88.  https://doi.org/10.1021/acscatal.6b02181 CrossRefGoogle Scholar
  181. Tang P, Tong Y, Chen H, Cao F, Pan G (2013) Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst. Curr Appl Phys 13:340–343.  https://doi.org/10.1016/j.cap.2012.08.006 CrossRefGoogle Scholar
  182. Taniguchi I, Aurian-Blajeni B, Bockris JOM (1984) The mediation of the photoelectrochemical reduction of carbon dioxide by ammonium ions. J Electroanal Chem 161:385–388.  https://doi.org/10.1016/S0022-0728(84)80195-3 CrossRefGoogle Scholar
  183. Valentin CD, Wang FG, Pacchioni G (2013) Tungsten oxide in catalysis and photocatalysis: hints from DFT. Top Catal 56:1404–1419.  https://doi.org/10.1007/s11244-013-0147-6 CrossRefGoogle Scholar
  184. Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737.  https://doi.org/10.1021/nl803258p CrossRefGoogle Scholar
  185. Vradman L, Friedland E, Zana J, Vidruk-Nehemya R, Herskowitz M (2017) Molten salt synthesis of LaCoO3 perovskite. J Mater Sci 52:11383–11390.  https://doi.org/10.1007/s10853-017-1332-y CrossRefGoogle Scholar
  186. Wang S, Wang LW (2010) Atomic and electronic structures of GaN/ZnO alloys. Phys Rev Lett 104:065501.  https://doi.org/10.1103/PhysRevLett.104.065501. CrossRefGoogle Scholar
  187. Wang D, Kako T, Ye J (2009a) New series of solid-solution semiconductors (AgNbO3)1− x(SrTiO3)x with modulated band structure and enhanced visible-light photocatalytic activity. J Phys Chem C 113:3785–3792.  https://doi.org/10.1021/jp807393a CrossRefGoogle Scholar
  188. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Markus AM (2009b) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80.  https://doi.org/10.1038/nmat2317 CrossRefGoogle Scholar
  189. Wang JW, Mao BD, Gole JL, Burda C (2010) Visible-light-driven reversible and switchable hydrophobic to hydrophilic nitrogen-doped titania surfaces: correlation with photocatalysis. Nanoscale 2:2257–2261.  https://doi.org/10.1039/C0NR00313A CrossRefGoogle Scholar
  190. Wang YJ, Wang QS, Zhan XY, Wang FM, Safdar M, He J (2013a) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5:8326–8339.  https://doi.org/10.1039/C3NR01577G CrossRefGoogle Scholar
  191. Wang Z, Yang CY, Lin TQ, Yin H, Chen P, Wan DY, Xu FF, Huang FQ, Lin JH, Xie XM, Jiang MH (2013b) H-doped black Titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23:5444–5450.  https://doi.org/10.1002/adfm.201300486 CrossRefGoogle Scholar
  192. Wang Z, Hou JG, Yang C, Jiao SQ, Huang K, Zhu HM (2013c) Hierarchical metastable γ-TaON hollow structures for efficient visible-light water splitting. Energy Environ Sci 6:2134–2144.  https://doi.org/10.1039/C3EE24370B CrossRefGoogle Scholar
  193. Wang CD, Qiu H, Inoue T, Yao QW (2014a) Highly active SrTiO3 for visible light photocatalysis: a first-principles prediction. Solid State Commun 181:5–8.  https://doi.org/10.1016/j.ssc.2013.11.026. CrossRefGoogle Scholar
  194. Wang JJ, Feng JY, Zhang L, Li ZS, Zou ZG (2014b) Role of oxygen impurity on the mechanical stability and atomic cohesion of Ta3N5 semiconductor photo-catalyst. Phys Chem Chem Phys 16:15375–15380.  https://doi.org/10.1039/C4CP00120F CrossRefGoogle Scholar
  195. Wang W-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015a) CO2 hydrogenation to formate and methanol as an alternative to photo-and electrochemical CO2 reduction. Chem Rev 115:12936–12973.  https://doi.org/10.1021/acs.chemrev.5b00197 CrossRefGoogle Scholar
  196. Wang S, Hou Y, Wang X (2015b) Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. ACS Appl Mater Inter 7:4327–4335.  https://doi.org/10.1021/am508766s CrossRefGoogle Scholar
  197. Wang C, Yang S, Chen X, Wen T, Yang HG (2017) Surface-functionalized perovskite films for stable photoelectrochemical water splitting. J Mater Chem A 5:910–913.  https://doi.org/10.1039/C6TA08812K CrossRefGoogle Scholar
  198. Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energy Environ Sci 5:5133–5146.  https://doi.org/10.1039/C1EE02875H CrossRefGoogle Scholar
  199. Wattanawikkam C, Pecharapa W (2016) Sonochemical synthesis, characterization, and photocatalytic activity of perovskite ZnTiO3 nanopowders. IEEE T Ultrason Ferr 63:1663–1667.  https://doi.org/10.1109/TUFFC.2016.2593002 CrossRefGoogle Scholar
  200. Weber M, Dignam M (1984) Efficiency of splitting water with semiconducting photoelectrodes. J Electrochem Soc 131:1258–1265.  https://doi.org/10.1149/1.2115797 CrossRefGoogle Scholar
  201. Wei W, Dai Y, Yang K, Guo M, Huang B (2008) Origin of the visible light absorption of GaN-rich Ga1–xZnxN1–xOx (x-0.125) solid solution. J Phys Chem C 112:15915–15919.  https://doi.org/10.1021/jp804146a CrossRefGoogle Scholar
  202. Wenderich K, Mul G (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev 116:14587–14619.  https://doi.org/10.1021/acs.chemrev.6b00327 CrossRefGoogle Scholar
  203. Wendt S, Sprunger PT, Lira E, Madsen GKH, Li Z, Hansen JØ, Matthiesen J, Blekinge-Rasmussen A, Lægsgaars E, Hammer B, Besenbacger F (2008) The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320:1755–1759.  https://doi.org/10.1126/science.1159846 CrossRefGoogle Scholar
  204. Wu F, Hu XY, Fan J, Liu EZ, Sun T, Kang LM, Hou WQ, Zhu CJ, Liu HC (2013) Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics 8:501–508.  https://doi.org/10.1007/s11468-012-9418-5 CrossRefGoogle Scholar
  205. Xia XH, Lu L, Walton AS, Ward M, Han XP, Brydson R, Luo JK, Shao G (2012) Origin of significant visible-light absorption properties of Mn-doped TiO2 thin films. Acta Mater 60:1974–1985.  https://doi.org/10.1016/j.actamat.2012.01.006 CrossRefGoogle Scholar
  206. Xie K, Umezawa N, Zhang N, Reunchan P, Zhang Y, Ye J (2011) Self-doped SrTiO3-[small delta] photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy Environ Sci 4:4211–4219.  https://doi.org/10.1039/C1EE01594J CrossRefGoogle Scholar
  207. Xie MZ, Fu XD, Jing LQ, Luan P, Feng YJ, Fu HG (2014) Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv Energy Mater 4:1300995.  https://doi.org/10.1002/aenm.201300995 CrossRefGoogle Scholar
  208. Xu G, Huang X, Krstic V, Chen S, Yang X, Chao C, Shen G, Han G (2014) Hydrothermal synthesis of single-crystalline tetragonal perovskite PbTiO3 nanosheets with dominant (001) or (111) facets. Cryst Eng Comm 16:4373–4376.  https://doi.org/10.1039/C4CE00234B CrossRefGoogle Scholar
  209. Xu Y-F, Yang M-Z, Chen B-X, Wang X-D, Chen H-Y, Kuang D-B, Su C-Y (2017) A CsPbBr3 Perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J Am Chem Soc 139:5660–5663.  https://doi.org/10.1021/jacs.7b00489 CrossRefGoogle Scholar
  210. Yan Y, Wang C, Yan X, Xiao LS, He JH, Gu W, Shi WD (2014) Graphene acting as surface phase junction in anatase–graphene–rutile heterojunction photo-catalysts for H2 production from water splitting. J Phys Chem C 118:23519–23526.  https://doi.org/10.1021/jp507087k CrossRefGoogle Scholar
  211. Yang Y, Li X, Chen J, Wang L (2004) Effect of doping mode on the photocatalytic activities of Mo/TiO2. J Photochem Photobiol A 163:517–522.  https://doi.org/10.1016/j.jphotochem.2004.02.008 CrossRefGoogle Scholar
  212. Yang YH, Liu EZ, Dai HZ, Kang LM, Wu HT, Fan J, Hu XY, Liu HC (2014) Photocatalytic activity of Ag–TiO2–graphene ternary nanocomposites and application in hydrogen evolution by water splitting. Int J Hydrog Energy 39:7664–7671.  https://doi.org/10.1016/j.ijhydene.2013.09.109 CrossRefGoogle Scholar
  213. Yang G, Chen D, Ding H, Feng J, Zhang JZ, Zhu Y, Hamid S, Bahnemann DW (2017a) Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Appl Catal B-Environ 219:611–618.  https://doi.org/10.1016/j.apcatb.2017.08.016 CrossRefGoogle Scholar
  214. Yang KD, Lee CW, Jang JH, Ha TR, Nam KT (2017b) Rise of nano effects in electrode during electrocatalytic CO2 conversion. Nanotechnology 28:352001.  https://doi.org/10.1088/1361-6528/aa7b0b CrossRefGoogle Scholar
  215. Yashima M, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Photo-catalyst releasing hydrogen from water. Nature 440:295.  https://doi.org/10.1038/440295a CrossRefGoogle Scholar
  216. Yin S, Zhu Y, Ren Z, Chao C, Li X, Wei X, Shen G, Han Y, Han G (2014) Facile synthesis of PbTiO3 truncated octahedra via solid-state reaction and their application in low-temperature CO oxidation by loading Pt nanoparticles. J Mater Chem A 2:9035–9039.  https://doi.org/10.1039/C4TA00374H CrossRefGoogle Scholar
  217. Yokoyama D, Hashiguchi H, Maeda K, Minegishi T, Takata T, Abe R, Kubota J, Domen K (2011) Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Film 519:2087–2092.  https://doi.org/10.1016/j.tsf.2010.10.055 CrossRefGoogle Scholar
  218. Yoshitomi F, Sekizawa K, Maeda K, Ishitani O (2015) Selective formic acid production via CO2 reduction with visible light using a hybrid of a perovskite tantalum oxynitride and a binuclear ruthenium (II) complex. ACS Appl Mater Inter 7:13092–13097.  https://doi.org/10.1021/acsami.5b03509 CrossRefGoogle Scholar
  219. Yu JG, Qi LF, Jaroniec M (2010) Hydrogen production by photocatalytic water-splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114:13118–13125.  https://doi.org/10.1021/jp104488b CrossRefGoogle Scholar
  220. Yu H, Yan SC, Li ZS, Yu T, Zou ZG (2012) Efficient visible-light-driven photocatalytic H2 production over Cr/N-codoped SrTiO3. Int J Hydrog Energy 37:12120–12127.  https://doi.org/10.1016/j.ijhydene.2012.05.097 CrossRefGoogle Scholar
  221. Zeng D, Xiao L, Ong W-J, Wu P, Zheng H, Chen Y, Peng D-L (n.d.) Hierarchical ZnIn2S4/MoSe2 nanoarchitectures for efficient noble-metal-free photocatalytic hydrogen evolution under visible light. Chem Sus Chem 10:4624–4631.  https://doi.org/10.1002/cssc.201701345
  222. Zhang QF, Uchaker E, Candelaria SL, Cao GZ (2013a) Nanomaterials for energy conversion and storage. Chem Rev Soc 42:3127–3171.  https://doi.org/10.1039/C3CS00009E CrossRefGoogle Scholar
  223. Zhang ZH, Hedhili MN, Zhu HB, Wang P (2013b) Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys Chem Chem Phys 15:15637–15644.  https://doi.org/10.1039/C3CP52759J CrossRefGoogle Scholar
  224. Zhang ZY, Wang Z, Cao SW, Xue C (2013c) Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J Phys Chem C 117:25939–25947.  https://doi.org/10.1021/jp409311x CrossRefGoogle Scholar
  225. Zhang ZH, Zhang LB, Hedhili MN, Zhang HN, Wang P (2013d) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13:14–20.  https://doi.org/10.1021/nl3029202 CrossRefGoogle Scholar
  226. Zhang X, Liu Y, Lee ST, Yang SH, Kang ZH (2014a) Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ Sci 7:1409–1419.  https://doi.org/10.1039/C3EE43278E CrossRefGoogle Scholar
  227. Zhang X, Liu Y, Kang ZH (2014b) 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl Mater Interfaces 6:4480–4489.  https://doi.org/10.1021/am500234v CrossRefGoogle Scholar
  228. Zhao WR, Ai ZY, Dai JS, Zhang M (2014) Enhanced photocatalytic activity for H2 evolution under irradiation of UV–vis light by Au-modified nitrogen-dopedTiO2. PLoS One 9:e103671.  https://doi.org/10.1371/journal.pone.0103671 CrossRefGoogle Scholar
  229. Zhen C, Wang LZ, Liu G, Lu GQ, Cheng HM (2013) Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Chem Commun 49:3019–3021.  https://doi.org/10.1039/C3CC40760H CrossRefGoogle Scholar
  230. Zheng Z, Huang B, Qin X, Zhang X, Dai Y (2011) Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity. J Colloid Interface Sci 358:68–72.  https://doi.org/10.1016/j.jcis.2011.02.032 CrossRefGoogle Scholar
  231. Zhou Y, Tian Z, Zhao Z, Liu Q, Kou J, Chen X, Gao J, Yan S, Zou Z (2011a) High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl Mater Inter 3:3594–3601.  https://doi.org/10.1021/am2008147 CrossRefGoogle Scholar
  232. Zhou X, Shi JY, Li C (2011b) Effect of metal doping on electronic structure and visible light absorption of SrTiO3 and NaTaO3 (Metal=Mn, Fe, and Co). J Phys Chem C 115:8305–8311.  https://doi.org/10.1021/jp200022x CrossRefGoogle Scholar
  233. Zhou H, Guo J, Li P, Fan T, Zhang D, Ye J (2013) Leaf-architectured 3D hierarchical artificial photosynthetic system of Perovskite Titanates towards CO2 photoreduction into hydrocarbon fuels. Sci Rep-UK 3:1667.  https://doi.org/10.1038/srep01667 CrossRefGoogle Scholar
  234. Zhou C, Shang L, Yu HJ, Bian T, Wu LZ, Tung CH, Zhang TR (2014) Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. Catal Today 225:158–163.  https://doi.org/10.1016/j.cattod.2013.10.085 CrossRefGoogle Scholar
  235. Zhou H, Li P, Guo J, Yan R, Fan T, Zhang D, Ye J (2015) Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: towards CO2 photo-fixation into CO and CH4. Nanoscale 7:113–120.  https://doi.org/10.1039/C4NR03019B CrossRefGoogle Scholar
  236. Zhu W, Qiu XF, Iancu V, Chen XQ, Pan H, Wang W, Dimitrijevic NM, Rajh T, Meyer HM, Paranthaman M, Stocks GM, Weitering HH, Gu BH, Eres G, Zhang ZY (2009) Band gap narrowing of titanium oxide semiconductors by non-compensated anion-cation codoping for enhanced visible-light photo-activity. Phys Rev Lett 103:226401.  https://doi.org/10.1103/PhysRevLett CrossRefGoogle Scholar
  237. Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014a) Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4:2917–2940.  https://doi.org/10.1021/cs500606g CrossRefGoogle Scholar
  238. Zhu YS, Xu Y, Hou YD, Ding ZX, Wang XC (2014b) Cobalt sulfide modified graphitic carbon nitride semiconductor for solar hydrogen production. Int J Hydrog Energy 39(23):11873–11879.  https://doi.org/10.1016/j.apsusc.2016.09.086. CrossRefGoogle Scholar
  239. Zhu C, Jiang Z, Chen L, Qian K, Xie J (2017a) L-cysteine-assisted synthesis of hierarchical NiS2 hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime. Nanotechnology 28:115708.  https://doi.org/10.1088/1361-6528/aa5cf2 CrossRefGoogle Scholar
  240. Zhu Y, Gao C, Bai S, Chen S, Long R, Song L, Li Z, Xiong Y (2017b) Hydriding Pd cocatalysts: an approach to giant enhancement on photocatalytic CO2 reduction into CH4. Nano Res 10:3396–3406.  https://doi.org/10.1007/s12274-017-1552-0 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Santanu Sarkar
    • 1
  • Shubhrajit Sarkar
    • 2
  • Chiranjib Bhattacharjee
    • 2
    Email author
  • Supriya Sarkar
    • 1
  1. 1.Environment Research GroupR&D, Tata Steel Ltd.JamshedpurIndia
  2. 2.Chemical Engineering DepartmentJadavpur UniversityKolkataIndia

Personalised recommendations