Advertisement

Highly Stable Metal Oxide-Based Heterostructured Photocatalysts for an Efficient Photocatalytic Hydrogen Production

  • Murikinati Mamatha Kumari
  • Raghava Reddy Kakarla
  • N. Ramesh Reddy
  • U. Bhargava
  • M. V. Shankar
  • S. K. Soni
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 31)

Abstract

The need for fuel generated by renewable resources has become important in the global scenario. Solar energy is an abundantly available renewable resource for the earth. There is a huge potential for H2 derived from clean energy resources for commercial applications such as generation of electricity, fuel for transportation, domestic usage, rocket propulsion, etc. With H2 as a fuel, a zero-emission process using fuel cells produces electricity with only water as the by-product. Global demand for hydrogen (H2) as an energy carrier is steadily increasing. Researchers are therefore working towards the development of efficient materials for hydrogen (H2) production by solar photocatalysis. For efficient H2 fuel production, development of novel/modified photocatalysts that are efficient, stable and recyclable remains a challenge.

Titanium dioxide (TiO2), with a band gap of 3.2 eV and suitable band potential, has demonstrated efficient H2 production under UV light irradiation. Significant research had been carried out to modify TiO2-based photocatalysts for enhanced H2 production under UV light and solar/visible light irradiation since in its pure form, it can absorb only UV light (<5% of solar light). This chapter briefs and summarizes about the recent works on the photocatalytic hydrogen production of highly stable TiO2-based heterostructured photocatalysts. This book chapter also aims to concentrate on three important characteristics: (a) UV-active TiO2-based photocatalysts, (b) visible active TiO2-based photocatalysts and (c) the effects of various carbon nanostructures on the photocatalytic hydrogen production efficacy of TiO2-based heterostructured photocatalysts.

Keywords

Semiconducting metal oxides TiO2 Heterostructured photocatalysts Doped photocatalysts Functionalization Carbon materials (carbon nanotube graphene) Catalyst properties Crystal phases Band edge Band gap Noble metals Sacrificial reagents Photocatalysis Catalytic kinetics Photocatalytic mechanism Photocatalytic water splitting Visible and UV light irradiation Hydrogen production 

References

  1. Antony RP, Mathews T, Ramesh C, Murugesan N, Dasgupta A, Dhara S, Dash S, Tyagi AK (2012) Efficient photocatalytic hydrogen generation by Pt modified TiO 2 nanotubes fabricated by rapid breakdown anodization. Int J Hydrog Energy 37:8268–8276.  https://doi.org/10.1016/j.ijhydene.2012.02.089 CrossRefGoogle Scholar
  2. Asiri AM, Al-Amoudi MS, Bazaid SA, Adam AA, Alamry KA, Anandan S (2014) Enhanced visible light photodegradation of water pollutants over N-, S-doped titanium dioxide and n-titanium dioxide in the presence of inorganic anions. J Saudi Chem Soc 18:155–163.  https://doi.org/10.1016/j.jscs.2011.06.008 CrossRefGoogle Scholar
  3. Bai H, Liu Z, Sun DD (2012) The design of a hierarchical photocatalyst inspired by natural forest and its usage on hydrogen generation. Int J Hydrog Energy 37:13998–14008.  https://doi.org/10.1016/j.ijhydene.2012.07.041 CrossRefGoogle Scholar
  4. Bellamkonda S, Thangavel N, Hafeez HY, Neppolian B, Ranga Rao G (2017) Highly active and stable multi-walled carbon nanotubes-graphene-TiO2nanohybrid: an efficient non-noble metal photocatalyst for water splitting. Catal Today 321–322:120–127.  https://doi.org/10.1016/j.cattod.2017.10.023
  5. Beltram A, Melchionna M, Montini T, Nasi L, Fornosiero P, Proto M (2017) Making H2 from light and biomass-derived alcohols: The outstanding activity newly designed hierarchical MWCNT/Pd@TiO2 hybrid catalyst Green chemistry. RSC Adv 19:2379–2389.  https://doi.org/10.1039/C6GC01979J
  6. Chen WT, Chan A, Sun-Waterhouse D, Moriga T, Idriss H, Waterhouse GIN (2015) Ni/TiO2: a promising low-cost photocatalytic system for solar H2 production from ethanol-water mixtures. J Catal 326:43–53.  https://doi.org/10.1016/j.jcat.2015.03.008
  7. Chen D, Zou L, Li S, Zheng F (2016) Nanospherical like reduced graphene oxide decorated TiO 2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Sci Rep 6:1–8.  https://doi.org/10.1038/srep20335 CrossRefGoogle Scholar
  8. Cheng H-L, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003a) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci 100:10794–10799.  https://doi.org/10.1073/pnas.1934713100 CrossRefGoogle Scholar
  9. Cheng P, Zheng M, Jin Y, Huang Q, Gu M (2003b) Preparation and characterization of silica-doped titania photocatalyst through sol-gel method. Mater Lett 57:2989–2994.  https://doi.org/10.1016/S0167-577X(02)01409-X CrossRefGoogle Scholar
  10. Cheng P, Yang Z, Wang H, Cheng W, Chen M, Shangguan W, Ding G (2012) TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int J Hydrog Energy 37:2224–2230.  https://doi.org/10.1016/j.ijhydene.2011.11.004 CrossRefGoogle Scholar
  11. Cheng W-Y, Yu T-H, Chao K-J, Lu S-Y (2014) Cu2O-decorated mesoporous TiO2 beads as a highly efficient photocatalyst for hydrogen production. ChemCatChem 6:293–300.  https://doi.org/10.1002/cctc.201300681 CrossRefGoogle Scholar
  12. Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545.  https://doi.org/10.1016/j.procbio.2007.08.008 CrossRefGoogle Scholar
  13. Chiarello GL, Aguirre MH, Selli E (2010) Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J Catal 273:182–190.  https://doi.org/10.1016/j.jcat.2010.05.012 CrossRefGoogle Scholar
  14. Cong Y, Long M, Cui Z, Li X, Dong Z, Yuan G, Zhang J (2013) Anchoring a uniform TiO2 layer on graphene oxide sheets as an efficient visible light photocatalyst. Appl Surf Sci 282:400–407.  https://doi.org/10.1016/j.apsusc.2013.05.143 CrossRefGoogle Scholar
  15. Dai K, Peng T, Ke D, Wei B (2009) Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Nanotechnology 20:125603.  https://doi.org/10.1088/0957-4484/20/12/125603 CrossRefGoogle Scholar
  16. Dai K, Lu L, Liu Q, Zhu G, Liu Q, Liu Z (2014a) Graphene oxide capturing surface-fluorinated TiO2 nanosheets for advanced photocatalysis and the reveal of synergism reinforce mechanism. Dalton Trans 43:2202–2210.  https://doi.org/10.1039/C3DT52542B
  17. Dai K, Zhang X, Fan K, Zeng P, Peng T (2014b) Multiwalled carbon nanotube-TiO2 nanocomposite for visible-light-induced photocatalytic hydrogen evolution. J Nanomater 2014:1–8Google Scholar
  18. Dosado AG, Chen WT, Chan A, Sun-Waterhouse D, Waterhouse GIN (2015) Novel Au/TiO<inf>2</inf> photocatalysts for hydrogen production in alcohol-water mixtures based on hydrogen titanate nanotube precursors. J Catal 330:238–254.  https://doi.org/10.1016/j.jcat.2015.07.014 CrossRefGoogle Scholar
  19. Duonghong D, Borgarello E, Grätzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103:4685–4690.  https://doi.org/10.1021/ja00406a004 CrossRefGoogle Scholar
  20. El-Bery HM, Matsushita Y, Abdel-moneim A (2017) Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: comparison between RGO, Au and Pt reduction sites. Appl Surf Sci 423:185–196.  https://doi.org/10.1016/j.apsusc.2017.06.130 CrossRefGoogle Scholar
  21. Gupta B, Melvin AA, Matthews T, Dhara S, Dash S, Tyagi AK (2015) Facile gamma radiolytic methodology for TiO2-rGO synthesis: effect on photo-catalytic H2 evolution. Int J Hydrog Energy 40:5815–5823.  https://doi.org/10.1016/j.ijhydene.2015.02.102 CrossRefGoogle Scholar
  22. Haldorai Y, Rengaraj A, Lee JB, Huh YS, Han YK (2015) Highly efficient hydrogen production via water splitting using Pt@MWNT/TiO2 ternary hybrid composite as a catalyst under UV-visible light. Synth Met 199:345–352.  https://doi.org/10.1016/j.synthmet.2014.12.014 CrossRefGoogle Scholar
  23. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96.  https://doi.org/10.1021/cr00033a004 CrossRefGoogle Scholar
  24. Jamalluddin NA, Abdullah AZ (2011) Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: effect of Fe(III) loading and calcination temperature. Ultrason Sonochem 18:669–678.  https://doi.org/10.1016/j.ultsonch.2010.09.004 CrossRefGoogle Scholar
  25. Janisch R, Gopal P, Spaldin NA (2005) Transition metal doped TiO2 and ZnO-present status of the field. J Phys Condens Matter 17:R657–R689CrossRefGoogle Scholar
  26. Jayakumar OD, Sasikala R, Kadam RM, Kienle L, Adelung R, Mittal JP, Tyagi AK (2012) Photochemical hydrogen generation using nitrogen-doped TiO 2 − Pd nanoparticles: facile synthesis and effect of Ti 3+ incorporation. J Phys Chem C 116:12642–12467Google Scholar
  27. Jovic V, Chen WT, Sun-Waterhouse D, Blackford MG, Idriss H, Waterhouse GIN (2013) Effect of gold loading and TiO2 support composition on the activity of Au/TiO2 photocatalysts for H2 production from ethanol-water mixtures. J Catal 305:307–317.  https://doi.org/10.1016/j.jcat.2013.05.031 CrossRefGoogle Scholar
  28. Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19:19995–20022.  https://doi.org/10.3390/molecules191219995 CrossRefGoogle Scholar
  29. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089.  https://doi.org/10.1021/ja027751g CrossRefGoogle Scholar
  30. Khan MA, Woo SI, Yang OB (2008) Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction. Int J Hydrog Energy 33:5345–5351.  https://doi.org/10.1016/j.ijhydene.2008.07.119 CrossRefGoogle Scholar
  31. Kim HG, Hwang DW, Bae SW, Jung JH, Lee JS (2003) Photocatalytic water splitting over La2Ti2O7 synthesized by the polymerizable complex method. Catal Lett 91:193–198CrossRefGoogle Scholar
  32. Kim J, Hwang DW, Kim HG, Bae SW, Lee JS, Li W, Oh SH (2005) Highly efficient overall water splitting through optimization of preparation and operation conditions of layered perovskite photocatalysts. Top Catal 35:295–303.  https://doi.org/10.1007/s11244-005-3837-x CrossRefGoogle Scholar
  33. Kolen’ko YV, Kovnir KA, Gavrilov AI, Garshev AV, Frantti J, Lebedev OI, Churagulov BR, Van Tendeloo G, Yoshimura M (2006) Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide. J Phys Chem B 110:4030–4038.  https://doi.org/10.1021/jp055687u CrossRefGoogle Scholar
  34. Kozlova EA, Korobkina TP, Vorontsov AV (2009) Overall water splitting over Pt/TiO2 catalyst with Ce3+/Ce4+ shuttle charge transfer system. Int J Hydrog Energy 34:138–146.  https://doi.org/10.1016/j.ijhydene.2008.09.101 CrossRefGoogle Scholar
  35. Kumari MM, Priyanka A, Marenna B, Haridoss P, Kumar DP, Shankar MV (2017) Benefits of tubular morphologies on electron transfer properties in CNT/TiNT nanohybrid photocatalyst for enhanced H 2 production. RSC Adv 7:7203–7209.  https://doi.org/10.1039/C6RA26693B CrossRefGoogle Scholar
  36. Lalitha K, Reddy JK, Phanikrishna Sharma MV, Kumari VD, Subrahmanyam M (2010) Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol:water mixtures under solar irradiation: a structure-activity correlation. Int J Hydrog Energy 35:3991–4001.  https://doi.org/10.1016/j.ijhydene.2010.01.106 CrossRefGoogle Scholar
  37. Li Y, Du J, Peng S, Xie D, Lu G, Li S (2008) Enhancement of photocatalytic activity of cadmium sulfide for hydrogen evolution by photoetching. Int J Hydrog Energy 33:2007–2013.  https://doi.org/10.1016/j.ijhydene.2008.02.023 CrossRefGoogle Scholar
  38. Li J, Chen X, Ai N, Hao J, Chen Q, Strauf S, Shi Y (2011a) Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chem Phys Lett 514:141–145.  https://doi.org/10.1016/j.cplett.2011.08.048 CrossRefGoogle Scholar
  39. Li N, Liu G, Zhen C, Li F, Zhang L, Cheng HM (2011b) Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 21:1717–1722.  https://doi.org/10.1002/adfm.201002295 CrossRefGoogle Scholar
  40. Li H, Zhang X, Cui X, Lin Y (2012) TiO 2 nanotubes/MWCNTs nanocomposite photocatalysts: synthesis, characterization and photocatalytic hydrogen evolution under UV-Vis light illumination. J Nanosci Nanotechnol 12:1806–1811.  https://doi.org/10.1166/jnn.2012.5161 CrossRefGoogle Scholar
  41. Liang Y, Wang H, Casalongue HS, Chen Z, Dai H (2010) TiO2 Nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705.  https://doi.org/10.1007/s12274-010-0033-5 CrossRefGoogle Scholar
  42. Liang S, Zhou Y, Kang K, Zhang Y, Cai Z, Pan J (2017) Synthesis and characterization of porous TiO2 -NS/Pt/GO aerogel: a novel three-dimensional composite with enhanced visible-light photoactivity in degradation of chlortetracycline. J Photochem Photobiol A Chem 346:1–9.  https://doi.org/10.1016/j.jphotochem.2017.05.036 CrossRefGoogle Scholar
  43. Luna AL, Novoseltceva E, Louarn E, Beaunier P, Kowalska E, Ohtani B, Valenzuela MA, Remita H, Colbeau-Justin C (2016) Synergetic effect of Ni and Au nanoparticles synthesized on titania particles for efficient photocatalytic hydrogen production. Appl Catal B Environ 191:18–28.  https://doi.org/10.1016/j.apcatb.2016.03.008 CrossRefGoogle Scholar
  44. Lv X-J, Fu W-F, Chang H-X, Zhang H, Cheng J-S, Zhang G-J, Song Y, Hu C-Y, Li J-H (2012) Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals. J Mater Chem 22:1539–1546.  https://doi.org/10.1039/C1JM14502A CrossRefGoogle Scholar
  45. Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Characterization of Rh-Cr mixed-oxide nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) as a cocatalyst for visible-light-driven overall water splitting. J Phys Chem B 110:13753–13758.  https://doi.org/10.1021/jp061829o CrossRefGoogle Scholar
  46. Mamathakumari M, Praveen Kumar D, Haridoss P, Durgakumari V, Shankar MV (2015) Nanohybrid of titania/carbon nanotubes – nanohorns: a promising photocatalyst for enhanced hydrogen production under solar irradiation. Int J Hydrog Energy 40:1665–1674.  https://doi.org/10.1016/j.ijhydene.2014.11.117 CrossRefGoogle Scholar
  47. Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM (2007) Photocatalysis for new energy production. Recent advances in photocatalytic water splitting reactions for hydrogen production. Catal Today 122:51–61.  https://doi.org/10.1016/j.cattod.2007.01.042 CrossRefGoogle Scholar
  48. Mishra G, Parida KM, Singh SK (2015) Facile fabrication of S-TiO2/??-SiC nanocomposite photocatalyst for hydrogen evolution under visible light irradiation. ACS Sustain Chem Eng 3:245–253.  https://doi.org/10.1021/sc500570k CrossRefGoogle Scholar
  49. Mou Z, Wu Y, Sun J, Yang P, Du Y, Lu C (2014) TiO2 nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation. ACS Appl Mater Interfaces 6:13798–13806.  https://doi.org/10.1021/am503244w CrossRefGoogle Scholar
  50. Moya A, Cherevan A, Marchesan S, Gebhardt P, Prato M, Eder D, Vilatela JJ (2015) Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Appl Catal B Environ 179:574–582.  https://doi.org/10.1016/j.apcatb.2015.05.052 CrossRefGoogle Scholar
  51. Naik B, Martha S, Parida KM (2011) Facile fabrication of Bi2O3/TiO2-xN x nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. Int J Hydrog Energy 36:2794–2802.  https://doi.org/10.1016/j.ijhydene.2010.11.104 CrossRefGoogle Scholar
  52. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13:169–189.  https://doi.org/10.1016/j.jphotochemrev.2012.06.001 CrossRefGoogle Scholar
  53. Naldoni A, D’Arienzo M, Altomare M, Marelli M, Scotti R, Morazzoni F, Selli E, Dal Santo V (2013) Pt and Au/TiO2 photocatalysts for methanol reforming: role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Appl Catal B Environ 130–131:239–248.  https://doi.org/10.1016/j.apcatb.2012.11.006 CrossRefGoogle Scholar
  54. Nazeeruddin MK, Baranoff E, Grätzel M (2011) Dye-sensitized solar cells: a brief overview. Sol Energy 85:1172–1178.  https://doi.org/10.1016/j.solener.2011.01.018 CrossRefGoogle Scholar
  55. Ou Y, Lin J, Fang S, Liao D (2006) MWNT-TiO2:Ni composite catalyst: a new class of catalyst for photocatalytic H2 evolution from water under visible light illumination. Chem Phys Lett 429:199–203.  https://doi.org/10.1016/j.cplett.2006.08.024 CrossRefGoogle Scholar
  56. Pan L, Zou JJ, Wang S, Huang ZF, Zhang X, Wang L (2013) Enhancement of visible-light-induced photodegradation over hierarchical porous TiO2by nonmetal doping and water-mediated dye sensitization. Appl Surf Sci 268:252–258.  https://doi.org/10.1016/j.apsusc.2012.12.074 CrossRefGoogle Scholar
  57. Patsoura A, Kondarides DI, Verykios XE (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124:94–102.  https://doi.org/10.1016/j.cattod.2007.03.028 CrossRefGoogle Scholar
  58. Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M, Zhang J (2015) Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591–8596.  https://doi.org/10.1038/srep08591
  59. Robertson PKJ (1996) Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process. J Clean Prod 4:203–212.  https://doi.org/10.1016/S0959-6526(96)00044-3 CrossRefGoogle Scholar
  60. Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106.  https://doi.org/10.1016/j.jcis.2011.12.038 CrossRefGoogle Scholar
  61. Sasikala R, Sudarsan V, Sudakar C, Naik R, Sakuntala T, Bharadwaj SR (2008) Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide. Int J Hydrog Energy 33:4966–4973.  https://doi.org/10.1016/j.ijhydene.2008.07.080 CrossRefGoogle Scholar
  62. Sasikala R, Shirole AR, Sudarsan V, Jagannath, Sudakar C, Naik R, Rao R, Bharadwaj SR (2010) Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2-Pd nanocomposites for hydrogen generation. Appl Catal A Gen 377:47–54.  https://doi.org/10.1016/j.apcata.2010.01.039 CrossRefGoogle Scholar
  63. Shet S, Ahn KS, Deutsch T, Wang HI, Ravindra N, Yan Y, Turner J, Al-Jassim M (2010) Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting. J Mater Res 25:69–75.  https://doi.org/10.1557/jmr.2010.0017 CrossRefGoogle Scholar
  64. Shinde Y, Wadhai S, Ponkshe A, Kapoor S, Thakur P (2017) Decoration of Pt on the metal free RGO-TiO 2 composite photocatalyst for the enhanced photocatalytic hydrogen evolution and photocatalytic degradation of pharmaceutical pollutant β blocker. Int J Hydrog Energy 43:4015–4027.  https://doi.org/10.1016/j.ijhydene.2017.10.089
  65. Sreethawong T, Laehsalee S, Chauadej S (2008) Comparative investigation of mesoporous- and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation. Int J Hydrog Energy 33:5947–5957.  https://doi.org/10.1016/j.ijhydene.2008.08.007 CrossRefGoogle Scholar
  66. Takata T, Tanaka A, Hara M, Kondo JN, Domen K (1998) Recent progress of photocatalysts for overall water splitting. Catal Today 44:17–26.  https://doi.org/10.1016/S0920-5861(98)00170-9 CrossRefGoogle Scholar
  67. Vu TTD, Mighri F, Ajji A, Do T (2014) Synthesis of titanium dioxide/cadmium sulfide nanosphere particles for photocatalyst applications. Ind Eng Chem Res 53:3888–3897.  https://doi.org/10.1021/ie403718n CrossRefGoogle Scholar
  68. Wu MC, Hiltunen J, Sápi A, Avila A, Larsson W, Liao HC, Huuhtanen M, Tóth G, Shchukarev A, Laufer N, Kukovecz Á, Kónya Z, Mikkola JP, Keiski R, Su WF, Chen YF, Jantunen H, Ajayan PM, Vajtai R, Kordás K (2011) Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen. ACS Nano 5:5025–5030.  https://doi.org/10.1021/nn201111j CrossRefGoogle Scholar
  69. Xu H, Ouyang S, Li P, Kako T, Ye J (2013) High-active anatase TiO 2 nanosheets exposed with 95% {100} facets toward efficient H 2 evolution and CO 2 photoreduction. ACS Appl Mater Interfaces 5:1348–1354.Google Scholar
  70. Ya-hui Y, Qi-yuan C, Zhou-lan Y, Jie L (2009) Applied surface science study on the photocatalytic activity of K 2 La 2 Ti 3 O 10 doped with zinc (Zn). Appl Surf Sci 255:8419–8424.  https://doi.org/10.1016/j.apsusc.2009.05.146
  71. Yamaguti K, Sato S (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 81:1237.  https://doi.org/10.1039/f19858101237 CrossRefGoogle Scholar
  72. Yin S, Ihara K, Liu B, Wang Y, Li R, Sato T (2007) Preparation of anatase, rutile and brookite type anion doped titania photocatalyst nanoparticles and thin films. Phys Scr T T129:268–273.  https://doi.org/10.1088/0031-8949/2007/T129/060 CrossRefGoogle Scholar
  73. Yun J-H, Wong RJ, Ng YH, Du A, Amal R (2012) Combined electrophoretic deposition–anodization method to fabricate reduced graphene oxide–TiO2 nanotube films. RSC Adv 2:8164–8171.  https://doi.org/10.1039/c2ra20827j
  74. Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806.  https://doi.org/10.1039/b917240h
  75. Zhang H, Liu F, Wu H, Cao X, Sun J, Lei W (2017) In situ synthesis of g-C 3 N 4/TiO 2 heterostructures with enhanced photocatalytic hydrogen evolution under visible light. RSC Adv 7:40327–40333.  https://doi.org/10.1039/C7RA06786K CrossRefGoogle Scholar
  76. Zhou G, Shen L, Xing Z, Kou X, Duan S, Fan L, Meng H, Xu Q, Zhang X, Li L, Zhao M, Mi J, Li Z (2017) Ti 3+ self-doped mesoporous black TiO 2/graphene assemblies for unpredicted-high solar-driven photocatalytic hydrogen evolution. J Colloid Interface Sci 505:1031–1038.  https://doi.org/10.1016/j.jcis.2017.06.097 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Murikinati Mamatha Kumari
    • 1
  • Raghava Reddy Kakarla
    • 2
  • N. Ramesh Reddy
    • 1
  • U. Bhargava
    • 1
  • M. V. Shankar
    • 1
  • S. K. Soni
    • 3
  1. 1.Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & NanotechnologyYogi Vemana UniversityKadapaIndia
  2. 2.The School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
  3. 3.Sustainable Living Lab, School of ScienceRMIT UniversityMelbourneAustralia

Personalised recommendations