Advertisement

Efficient Algorithms for High Utility Itemset Mining Without Candidate Generation

  • Jun-Feng QuEmail author
  • Mengchi Liu
  • Philippe Fournier-Viger
Chapter
Part of the Studies in Big Data book series (SBD, volume 51)

Abstract

High utility itemsets are sets of items having a high utility or profit in a database. Efficiently discovering high utility itemsets plays a crucial role in real-life applications such as market analysis. Traditional high utility itemset mining algorithms generate candidate itemsets and subsequently compute the exact utilities of these candidates. These algorithms have the drawback of generating numerous candidates most of which are discarded for having a low utility. In this paper, we propose two algorithms, called HUI-Miner (High Utility Itemset Miner) and HUI-Miner*, for high utility itemset mining. HUI-Miner uses a novel utility-list structure to store both utility information about itemsets and heuristic information for search space pruning. The utility-list of items allows to directly derives the utility-lists of other itemsets and calculate their utilities without scanning the database. By avoiding candidate generation, HUI-Miner can efficiently mine high utility itemsets. To further speed up the construction of utility-lists, HUI-Miner* introduces an improved structure called utility-list* and an horizontal method to construct utility-lists*. Experimental results show that the proposed algorithms are several orders of magnitude faster than the state-of-the-art algorithms, reduce memory consumption, and that HUI-Miner* outperforms HUI-Miner especially for sparse databases.

Notes

Acknowledgments

This work was supported by Natural Science Foundation of HuBei Province of China (Grant No. 2017CFB723).

References

  1. 1.
    Ceglar, A., Roddick, J.F.: Association mining. ACM Comput. Surv. 38(2), 55–86 (2006)CrossRefGoogle Scholar
  2. 2.
    Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov. 15(1), 55–86 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Fournier-Viger, P., Lin, J.C.-W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A survey of itemset mining. WIREs Data Min. Knowl. Discov., e1207 (2017). Wiley.  https://doi.org/10.1002/widm.1207Google Scholar
  4. 4.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the International Conference on Very Large Data Bases (VLDB), pp. 487–499 (1994)Google Scholar
  5. 5.
    Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from databases. In: Proceedings of the SIAM International Conference on Data Mining (SDM), pp. 482–486 (2004)Google Scholar
  6. 6.
    Liu, Y., Liao, W.-K., Choudhary, A.N.: A two-phase algorithm for fast discovery of high utility itemsets. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp. 689–695 (2005)CrossRefGoogle Scholar
  7. 7.
    Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated items discarding strategy for discovering high utility itemsets. Data Knowl. Eng. 64(1), 198–217 (2008)CrossRefGoogle Scholar
  8. 8.
    Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K.: Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data Eng. 21(12), 1708–1721 (2009)CrossRefGoogle Scholar
  9. 9.
    Tseng, V.S., Wu, C.-W., Shie, B.-E., Yu, P.S.: UP-Growth: an efficient algorithm for high utility itemset mining. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 253–262 (2010)Google Scholar
  10. 10.
    Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786 (2013)CrossRefGoogle Scholar
  11. 11.
    Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the ACM 21st International Conference on Information and Knowledge Management (CIKM), pp. 55–64 (2012)Google Scholar
  12. 12.
    Rymon, R.: Search through systematic set enumeration. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, pp. 539–550 (1992)Google Scholar
  13. 13.
    Barber, B., Hamilton, H.J.: Extracting share frequent itemsets with infrequent subsets. Data Min. Knowl. Discov. 7(2), 153–185 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, Y.-C., Yeh, J.-S., Chang, C.-C.: A fast algorithm for mining share-frequent itemsets. In: Proceedings Asia-Pacific Web Conference (APWeb), pp. 417–428 (2005)CrossRefGoogle Scholar
  15. 15.
    Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Efficient algorithms for mining share-frequent itemsets. In: Proceedings of the 11th World Congress of International Fuzzy Systems Association, pp. 534–539 (2005)Google Scholar
  16. 16.
    Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Direct candidates generation: a novel algorithm for discovering complete share-frequent itemsets. In: Proceedings of the Fuzzy Systems and Knowledge Discovery, pp. 551–560 (2005)CrossRefGoogle Scholar
  17. 17.
    Liu, Y., Liao, W.-K., Choudhary, A.: A fast high utility itemsets mining algorithm. In: Proceedings of the Utility-Based Data Mining Workshop (UBDM), pp. 90–99 (2005)Google Scholar
  18. 18.
    Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach*. Data Min. Knowl. Discov. 8(1), 53–87 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hu, J., Mojsilovic, A.: High-utility pattern mining: a method for discovery of high-utility item sets. Pattern Recognit. 40(11), 3317–3324 (2007)CrossRefGoogle Scholar
  20. 20.
    Wu, C.W., Fournier-Viger, P., Yu, P., Tseng, V.: Efficient mining of a concise and lossless representation of high utility itemsets. In: Procedings of the IEEE International Conference Data Mining (ICDM), pp. 824–833 (2011)Google Scholar
  21. 21.
    Soulet, A., Crémilleux, B.: Adequate condensed representations of patterns. Data Min. Knowl. Discov. 17, 94–110 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Soulet, A., Raïssi, C., Plantevit, M., Crémilleux, B.: Mining dominant patterns in the sky. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), pp. 655–664 (2011)Google Scholar
  23. 23.
    Wu, C.W., Shie, B.-E., Tseng, V.S., Yu, P.S.: Mining top-k high utility itemsets. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 78–86 (2012)Google Scholar
  24. 24.
    Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000)CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule algorithms. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 401–406 (2001)Google Scholar
  27. 27.
    Pisharath, J., Liu, Y., et al.: NU-Minebench: a data mining benchmark suite (2012)Google Scholar
  28. 28.
    Frequent itemset mining dataset repository (2012). http://fimi.ua.ac.be/
  29. 29.
    Armour Brown, C., Armour-Brown, C., et al.: Valgrind: a GPL’d system for debugging and profiling linux programs (2012). http://valgrind.org/
  30. 30.
    Palmerini, P.: Paolo Palmerini’s Website (2012). http://miles.cnuce.cnr.it/~palmeri/datam/DCI/datasets.php
  31. 31.
    Liu, G., Lu, H., Lou, W., Xu, Y., Yu, J.X.: Efficient mining of frequent patterns using ascending frequency ordered prefix-tree. Data Min. Knowl. Discov. 9(3), 249–274 (2004)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liu, G., Lu, H., Yu, J.X., Wang, W., Xiao, X.: AFOPT: an efficient implementation of pattern growth approach. In: Proceedings of the IEEE International Conference on Data Mining Workshop Frequent Itemset Mining Implementations (ICDM FIMI) (2003)Google Scholar
  33. 33.
    Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Proceedings of the 21st International Symposium on Methodologies for Intelligent Systems (ISMIS 2014), pp. 83–92. Springer, LNAI (2014)Google Scholar
  34. 34.
    Krishnamoorthy, S.: Pruning strategies for mining high utility itemsets. Expert Syst. Appl. 42(5), 2371–2381 (2015)CrossRefGoogle Scholar
  35. 35.
    Krishnamoorthy, S.: HMiner: efficiently mining high utility itemsets. Expert Syst. Appl. 90, 168–183 (2017)CrossRefGoogle Scholar
  36. 36.
    Duong, Q.-H., Liao, B., Fournier-Viger, P., Dam, T.-L.: An efficient algorithm for mining the top-k high utility itemsets, using novel threshold raising and pruning strategies. Knowl. Based Syst. 104, 106–122 (2016)CrossRefGoogle Scholar
  37. 37.
    Lin, J.C.-W., Gan, W., Fournier-Viger, P., Hong, T.-P., Tseng, V.S.: Efficiently mining uncertain high-utility itemsets. Soft Comput. 21, 2801–2820 (2016)CrossRefGoogle Scholar
  38. 38.
    Lin., J.C.W., Gan, W., Fournier-Viger, P., Tseng, V.S.: Efficient algorithms for mining high-utility itemsets in uncertain databases. Knowl. Based Syst. (KBS) 96, 171–187 (2016)CrossRefGoogle Scholar
  39. 39.
    Krishnamoorthy, S.: Efficient mining of high utility itemsets with multiple minimum utility thresholds. Eng. Appl. AI 69, 112–126 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jun-Feng Qu
    • 1
    Email author
  • Mengchi Liu
    • 2
  • Philippe Fournier-Viger
    • 3
  1. 1.School of Computer EngineeringHubei University of Arts and ScienceXiangyangChina
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.School of Humanities and Social SciencesHarbin Institute of Technology (Shenzhen)ShenzhenChina

Personalised recommendations