Advertisement

A Discontinuous Galerkin Variational Multiscale Approach to LES of Turbulent Flows

  • M. de la Llave PlataEmail author
  • E. Lamballais
  • V. Couaillier
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)

Abstract

In recent work (Chapelier et al, Comput Method Appl Mech Eng 307:275–299, 2016), [1] we have developed a variational multiscale simulation (VMS) approach based on a modal discontinuous Galerkin (DG) method. The separation of scales is achieved in each element via projection onto the discontinuous modal space. In (Chapelier et al, Comput Method Appl Mech Eng 307:275–299, 2016), [1], the DG-VMS technique was applied to the Taylor–Green vortex (TGV) flow at \(Re=3\,000\) demonstrating the potential of this approach to perform LES.

Notes

Acknowledgements

This research is partly funded by the European H2020 TILDA project. This work was performed using HPC resources from GENCI (Grants 2016-c20162a7622 and 2017-A0022A10129). We thank F. Naddei for his help with generating the cylinder meshes.

References

  1. 1.
    Chapelier, J.B., de la Llave Plata, M., Lamballais, E.: Development of a multiscale LES model in the context of a modal DG method. Comput. Method Appl. Mech. Eng. 307, 275–299 (2016)CrossRefGoogle Scholar
  2. 2.
    de la Llave Plata M., Couaillier V., le Pape M.C.: On the use of a high-order DG method for DNS and LES of wall-bounded turbulence. Comput. Fluids (2017).  https://doi.org/10.1016/j.compfluid.2017.05.013MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dairay, T., Lamballais, E., Laizet, S., Vassilicos, J.C.: Numerical dissipation vs. subgrid-scale modelling for LES. J. Comput. Phys. 337, 252–274 (2017)Google Scholar
  4. 4.
    Moura, R.C., Mengaldo, G., Peiró, J., Sherwin, S.J.: On the eddy-resolving capability of high-order DG approaches to implicit LES/under-resolved DNS of Euler turbulence. J. Comput. Phys. 330, 615–623 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20(8), 085101 (2008)CrossRefGoogle Scholar
  6. 6.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: LES of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbul. Combust. 89(4), 491–518 (2012)CrossRefGoogle Scholar
  7. 7.
    Wornom, S., Ouvrard, H., Salvetti, M.V., et al.: Variational multiscale LES of the flow past a circular cylinder: Reynolds number effects. Comput. Fluids 47(1), 44–50 (2011)CrossRefGoogle Scholar
  8. 8.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: LES of the flow over a circular cylinder at Reynolds number \(2\times 10^4\). Flow Turbul. Combust. 92(3), 673–698 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. de la Llave Plata
    • 1
    Email author
  • E. Lamballais
    • 2
  • V. Couaillier
    • 1
  1. 1.ONERAChâtillonFrance
  2. 2.Institute PPRIME, Université de PoitiersChasseneuil-du-PoitouFrance

Personalised recommendations