Flow Over a Realistic Car Model: WMLES Assessment and Turbulent Structures

  • D. E. Aljure
  • J. Calafell
  • A. Báez
  • A. OlivaEmail author
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)


Most CFD research on automotive external aerodynamics has been carried out using very simplified models such as the Ahmed car (Aljure, Lehmkuhl, Rodríguez, Oliva, Comput Fluids, 96:122–135, (2014), [1]). To reduce the gap between the production cars and models used for academic purposes, the DrivAer car model was introduced in 2012. References (Heft, Indinger, Adams, SAE Tech Pap, No. 2012-01-0168, (2012), [2], Strangfeld, Wieser, Schmidt, Woszidlo, Nateri, Paschereit, SAE Tech Pap, No. 2013-01-1251, (2013), [3]) performed experimental observations on this geometry. Their results suggested that the Reynolds number dependency of the force coefficients decreased as Re increased. Two values have been reported for Re number independence, \(Re=2\times 10^6\) (Strangfeld, Wieser, Schmidt, Woszidlo, Nateri, Paschereit, SAE Tech Pap, No. 2013-01-1251, (2013), [3]) and \(Re=4.87\times 10^6\) (Heft, Indinger, Adams, SAE Tech Pap, No. 2012-01-0168, (2012), [2]).



This work has been partially financially supported by the “Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación”, Spain (Project reference ENE2010-17801), by the collaboration project between “Universitat Politècnica de Catalunya” and Termo Fluids S. L. and the “Departamento Administrativo de Ciencia, Tecnología e Innovación - Colciencias” through their doctoral training program “Francisco Jose de Caldas”. We also acknowledge the access to the FinisTerrae II supercomputer granted by the “Red Espaola de Supercomputación” (RES).


  1. 1.
    Aljure, D.E., Lehmkuhl, O., Rodríguez, I., Oliva, A.: Flow and turbulent structures around simplified car models. Comput. Fluids 96, 122–135 (2014)CrossRefGoogle Scholar
  2. 2.
    Heft, A.I., Indinger, T., Adams, N.A.: Introduction of a new realistic generic car model for aerodynamic investigations. SAE Tech. Pap. No. 2012-01-0168 (2012)Google Scholar
  3. 3.
    Strangfeld, C., Wieser, D., Schmidt, J.-J., Woszidlo, R., Nateri, C., Paschereit, C.: Experimental study of baseline flow characteristics for the realistic car model drivaer. SAE Tech. Pap. No. 2013-01-1251 (2013)Google Scholar
  4. 4.
    Guilmineau, E.: Numerical simulations of flow around a realistic generic car model. SAE Tech. Pap. No. 2014-01-0607 (2014)Google Scholar
  5. 5.
    Guilmineau, E.: Numerical simulations of ground simulation for a realistic generic car model. In: Proceedings of the ASME 2014 Joint US-European Fluids Engineering Division Summer. Chicago, Illinois, USA, 3–7 Aug (2014)Google Scholar
  6. 6.
    Ashton, N., West, A., Lardeau, S., Revell, A.: Assesment of RANS and DES methods for realistic automotive models. Comput. Fluids 128, 1–15 (2016)CrossRefGoogle Scholar
  7. 7.
    Jakirlic, S., Kutej, L., Hanssmann, D., Basara, B., Schütz, T., Tropea, C.: Rear-end shape influence on the aerodynamic properties of a realistic car model: a RANS and hybrid LES/RANS study. New Results Numer. Exp. Fluid Mech. X 132, 397–407 (2016)CrossRefGoogle Scholar
  8. 8.
    Trias, F.X., Lehmkuhl, O., Oliva, A., Pérez-Segarra, C.D., Verstappen, R.W.C.P.: Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids. J. Comput. Phys. 258, 246–267 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Werner, H., Wengle, H.: Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In: 8th Symposium on Turbulent Shear Flows, pp. 155–168. Munich, Germany (1991)CrossRefGoogle Scholar
  10. 10.
    Rodríguez, I., Borrell, R., Lehmkuhl, O., Pérez-Segarra, C.D., Oliva, A.: Direct numerical simulation of the flow over a sphere at \(Re = 3700\). J. Fluid Mech. 679, 263–287 (2011)CrossRefGoogle Scholar
  11. 11.
    Lehmkuhl, O., Park, G.I., Moin, P.: LES of flow over the NASA common research model with near-wall modeling. In: Proceedings of the Summer Program 2016, Center for Turbulence Research, pp. 335–341. Standford (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. E. Aljure
    • 1
  • J. Calafell
    • 1
  • A. Báez
    • 1
  • A. Oliva
    • 1
    Email author
  1. 1.Heat and Mass Transfer Technological Center (CTTC)Universitat Politècnica de Catalunya-BarcelonaTech (UPC). ESEIAAT, Colom 11Terrassa, BarcelonaSpain

Personalised recommendations