Advertisement

Modeling of Wind Gusts for Large-Eddy Simulations Related to Fluid-Structure Interactions

  • G. De Nayer
  • M. BreuerEmail author
  • P. Perali
  • K. Grollmann
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)

Abstract

The dimensioning of lightweight structures under wind loads strongly depends on realistic flow conditions. Two different setups have to be distinguished. For a long-term analysis such as dynamic fatigue, temporally and spatially correlated velocity distributions are required as inflow conditions for a large-eddy simulation (LES) to mimic a realistic physical setup (Wood et al, Flow Turbul Combust 97(1):79–119, 2016, [9]).

References

  1. 1.
    Bierbooms, W.A.A.M.: Constrained stochastic simulation of wind gusts for wind turbine design. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands (2009)Google Scholar
  2. 2.
    Breuer, M., De Nayer, G., Münsch, M., Gallinger, T., Wüchner, R.: Fluid-structure interaction using a partitioned coupled predictor-corrector scheme for the application of large-eddy simulation. J. Fluids Struct. 29, 107–130 (2012)CrossRefGoogle Scholar
  3. 3.
    De Nayer, G., Breuer, M.: Numerical FSI investigation based on LES: flow past a cylinder with a flexible splitter plate involving large deformations (FSI-PfS-2a). Int. J. Heat Fluid Flow 50, 300–315 (2014)CrossRefGoogle Scholar
  4. 4.
    De Nayer, G., Kalmbach, A., Breuer, M., Sicklinger, S., Wüchner, R.: Flow past a cylinder with a flexible splitter plate: a complementary experimental-numerical investigation and a new FSI test case (FSI-PfS-1a). Comput. Fluids 99, 18–43 (2014)CrossRefGoogle Scholar
  5. 5.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially-developing direct numerical or large-eddy simulations. J. Comput. Phys. 186, 652–665 (2003)CrossRefGoogle Scholar
  6. 6.
    Martinuzzi, R.: Experimentelle Untersuchung der Umströmung wandgebundener rechteckiger, prismatischer Hindernisse. Ph.D. thesis, Universität Erlangen-Nürnberg, Germany (1992)Google Scholar
  7. 7.
    Schmidt, S., Breuer, M.: Extended synthetic turbulence inflow generator within a hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded flows. Flow Turbul. Combust. 95(4), 669–707 (2015)CrossRefGoogle Scholar
  8. 8.
    Schmidt, S., Breuer, M.: Source term based synthetic turbulence inflow generator for eddy-resolving predictions of an airfoil flow including a laminar separation bubble. Comput. Fluids 146, 1–22 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wood, J.N., De Nayer, G., Schmidt, S., Breuer, M.: Experimental investigation and large-eddy simulation of the turbulent flow past a smooth and rigid hemisphere. Flow Turbul. Combust. 97(1), 79–119 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • G. De Nayer
    • 1
  • M. Breuer
    • 1
    Email author
  • P. Perali
    • 2
  • K. Grollmann
    • 1
  1. 1.Helmut-Schmidt UniversityHamburgGermany
  2. 2.Ecole Centrale de NantesNantesFrance

Personalised recommendations