Advertisement

High Reynolds Number Airfoil: From Wall-Resolved to Wall-Modeled LES

  • A. FrèreEmail author
  • K. Hillewaert
  • P. Chatelain
  • G. Winckelmans
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)

Abstract

Wall-Modeled Large-Eddy Simulation (WMLES) alleviates the near-wall grid requirement by employing a wall-model to reconstruct the wall shear-stress. In this way, WMLES simultaneously reduces the computational cost associated with Wall-Resolved LES (WRLES) and opens the door towards higher Reynolds numbers (Piomelli, Wall-modeled large-eddy simulations: present status and prospects. Springer, Netherlands, 2010, [1], Larsson et al, Mech Eng Rev, 3, 2016, [2].

Notes

Acknowledgements

The author thanks Prof. Piomelli and Prof. Schlatter for their fruitful discussions. This research has been financed by the Walloon Region through the FirstDoCA framework. The study benefited from computational resources made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles (\(n^\circ 1117545\)).

References

  1. 1.
    Piomelli, U.: Wall-Modeled Large-Eddy Simulations: Present Status and Prospects. Springer, Netherlands (2010)Google Scholar
  2. 2.
    Larsson, J., Kawai, S., Bodart, J., Bermejo-Moreno, I.: Large-Eddy Simulation with modeled wall-stress: recent progress and future directions. Mech. Eng. Rev. 3 (2016)CrossRefGoogle Scholar
  3. 3.
    Shih, T.-H.: A generalized wall function. NASA Technical report (1999)Google Scholar
  4. 4.
    Balaras, E., Benocci, C., Piomelli, U.: Two-layer approximate boundary conditions for large-eddy simulations. AIAA J. 34 (1996)Google Scholar
  5. 5.
    Hillewaert, K.: Development of the discontinuous Galerkin Method for high-resolution, large scale CFD and acoustics in industrial geometries. PhD Ecole polytech. de Louvain (2013)Google Scholar
  6. 6.
    Carton de Wiart, C., Hillewaert, K., Duponcheel, M., Winckelmans, G.: Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number. Int. J. Numer. Meth. Fluids 74 (2013)Google Scholar
  7. 7.
    Frère, A., Carton de Wiart, C., Hillewaert, K., Chatelain, P., Winckelmans, G.: Application of wall-models to discontinuous Galerkin LES. Phys. Fluids 29 (2017)CrossRefGoogle Scholar
  8. 8.
    Carton de Wiart, C., Hillewaert, K., Bricteux, L., Winckelmans, G.: LES using a DG Method: isotropic turbulence, channel flow and periodic flow. In: Proceedings of DLES 9 (2013)Google Scholar
  9. 9.
    Frère, A., Hillewaert, K., Sarlak, H, Mikkelsen, R.F., Chatelain, P.: Cross-validation of numerical and exp. studies of transitional airfoil performance. In: Proceedings of 33rd AIAA-ASME (2015)Google Scholar
  10. 10.
    Frère, A., Sørensen, N.N., Hillewaert, K., Chatelain, P., Winckelmans, G.: Discontinuous Galerkin methodology for LES of wind turbine airfoils. J. Phys. Conf. Ser. 753 (2016)Google Scholar
  11. 11.
    Park, G.I., Moin, P.: An improved dynamic non-equilibrium wall-model for large eddy simulation. Phys. Fluids 26 (2014)CrossRefGoogle Scholar
  12. 12.
    Bose, S.T., Moin, P.: A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26 (2014)CrossRefGoogle Scholar
  13. 13.
    Wadcock, A.J.: Investigation of low-speed turbulent separated flow around airfoils. NASA Technical report 177450 (1987)Google Scholar
  14. 14.
    Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24 (2012)CrossRefGoogle Scholar
  15. 15.
    Brionnaud, R., Holmann, D.M., Modena, M.C.: Aerodynamic analysis of the 2nd AIAA High Lift Prediction Workshop by a Lattice-Boltzmann Method solver (2014)Google Scholar
  16. 16.
    Duprat, C., Balarac, G., Métais, O., Congedo, P.M., Brugière, O.: A wall-layer model for LES of turbulent flows with/out pressure gradient. Phys. Fluids 23 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. Frère
    • 1
    • 2
    Email author
  • K. Hillewaert
    • 1
  • P. Chatelain
    • 2
  • G. Winckelmans
    • 2
  1. 1.CenaeroGosseliesBelgium
  2. 2.Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain (UCL)Louvain-la-NeuveBelgium

Personalised recommendations