On the Resolution of Mean Skin Friction by Hybrid RANS/LES Simulations at High Reynolds Numbers

  • N. RenardEmail author
  • S. Deck
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)


This study addresses the following question: how much do the RANS model and the LES-resolved fluctuations contribute to mean skin friction when a Wall-Modelled LES is performed by means of a hybrid RANS/LES strategy (RANS near-wall modelling, LES outer layer resolution)? The paper relies on both Wall-Resolved and Wall-Modelled LES obtained by means of the Zonal Detached Eddy Simulation technique, together with very high Reynolds number predictions provided by RANS boundary layer simulations. A scale decomposition is performed by applying a spectral analysis to a recent physical decomposition of mean skin friction involving the production term of turbulent kinetic energy. The results suggest that half of mean skin friction may be resolved by some hybrid RANS/LES methods used as WMLES at very high Reynolds numbers.



The authors wish to thank all the people involved in the past and present evolution of the FLU3M code. Romain Laraufie and Pierre-Élie Weiss are warmly acknowledged for very stimulating discussions. The WRLES computation was made thanks to the HPC resources from GENCI-CINES (Project ZDESWALLTURB, Grant 2012-[c2012026817]).


  1. 1.
    Aupoix, B.: Couches Limites Bidimensionnelles Compressibles. Descriptif et Mode d’emploi du Code CLICET - Version 2010. Technical Report RT 1/117015 DMAE, Onera, Octobre 2010Google Scholar
  2. 2.
    Choi, J.-I., Edwards, J.R., Baurle, R.A.: Compressible boundary-layer predictions at high Reynolds number using hybrid LES/RANS methods. AIAA J. 47(9), 2179–2193 (2009)CrossRefGoogle Scholar
  3. 3.
    Deck, S.: Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26, 523–550 (2012)CrossRefGoogle Scholar
  4. 4.
    Deck, S., Renard, N., Laraufie, R., Sagaut, P.: Zonal Detached Eddy Simulation (ZDES) of a spatially developing flat plate turbulent boundary layer over the Reynolds number range \(3\,150 \le Re_\theta \le 14\,000\). Phys. Fluids 26, 025116 (2014)CrossRefGoogle Scholar
  5. 5.
    Deck, S., Renard, N., Laraufie, R., Weiss, P.-É.: Large scale contribution to mean wall shear stress in high Reynolds number flat plate boundary layers up to \(Re_\theta =13\,650\). J. Fluid Mech. 743, 202–248 (2014)CrossRefGoogle Scholar
  6. 6.
    DeGraaff, D.B., Eaton, J.K.: Reynolds number scaling of the flat plate turbulent boundary layer. J. Fluid Mech. 422, 319–346 (2000)CrossRefGoogle Scholar
  7. 7.
    Eitel-Amor, G., Örlü, R., Schlatter, P.: Simulation and validation of a spatially evolving turbulent boundary layer up to \(Re_\theta = 8\,300\). Int. J. Heat Fluid Flow 47, 57–69 (2014)CrossRefGoogle Scholar
  8. 8.
    Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)CrossRefGoogle Scholar
  9. 9.
    Jones, W.P., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15(2), 301–314 (1972)CrossRefGoogle Scholar
  10. 10.
    Marusic, I., Kunkel, G.J.: Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 15(8), 2461–2464 (2003)CrossRefGoogle Scholar
  11. 11.
    Marusic, I., Uddin, A.K.M., Perry, A.E.: Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers. Phys. Fluids 9, 3718–3726 (1997)CrossRefGoogle Scholar
  12. 12.
    Michel, R., Quémard, C., Durant, R.: Application d’un schéma de longueur de mélange à l’étude des couches limites turbulentes d’équilibre. Note Technique 154, ONERA (1969)Google Scholar
  13. 13.
    Piomelli, U.: Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 44, 437–446 (2008)CrossRefGoogle Scholar
  14. 14.
    Renard, N., Deck, S.: On the scale-dependent turbulent convection velocity in a spatially developing flat plate turbulent boundary layer at Reynolds number \(Re_\theta = 13\,000\). J. Fluid Mech. 775, 105–148 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Renard, N., Deck, S.: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339–367 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)CrossRefGoogle Scholar
  17. 17.
    Shur, M.L., Spalart, P.R., Strelets, MKh, Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)CrossRefGoogle Scholar
  18. 18.
    Sillero, J.A., Jimenez, J., Moser, R.D.: One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to \(\delta ^+\approx 2000\). Phys. Fluids 25, 105102 (2013)CrossRefGoogle Scholar
  19. 19.
    Sillero, J.A., Jimenez, J., Moser, R.D.: Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to \(\delta ^+\approx 2000\). Phys. Fluids 26, 105109 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ONERA The French Aerospace LabMeudonFrance

Personalised recommendations