Advertisement

On the Development of an Implicit High-Order Discontinuous Galerkin Solver for a Hybrid RANS-LES Model

  • F. Bassi
  • L. Botti
  • A. ColomboEmail author
  • A. Ghidoni
  • F. Massa
  • G. Noventa
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 25)

Abstract

Recent years have seen an ever-increasing interest in turbulence models able to go beyond the limited predictive capability of the Reynolds-averaged Navier–Stokes (RANS) formulation. In the range of moderate Reynolds numbers, availability of large HPC resources now allows to employ Large Eddy Simulation (LES) also in complex flow applications. In this context, the practice of an implicit LES (ILES) based on the Discontinuous Galerkin (DG) method showed to be very promising due to the good dispersion and dissipation properties of DG methods. However, to date, characteristic Reynolds numbers of many industrial applications are too large for a fully resolved LES. For these applications the use of a hybrid RANS-LES model or a wall modelled LES approach seems mandatory. In hybrid RANS-LES models the RANS equations are active close to solid walls, where LES would be prohibitively costly, while LES is used in regions of separated flow where larger eddies can be resolved.

Notes

Acknowledgements

The results reported in this paper have been achieved using the PRACE Research Infrastructure resource MARCONI-KNL based at CINECA, Casalecchio di Reno, Italy, within the Project “Discontinuous Galerkin method for the X-LES of TRAnsonic flows” (DGXTRA).

References

  1. 1.
    Kok, J.C., Dol, H.S., Oskam, B., van der Ven, H.: Extra-large eddy simulation of massively separated flows. AIAA Paper 2004–264 (2004)Google Scholar
  2. 2.
    Bassi, F., Botti, L., Colombo, A., Crivellini, A., Ghidoni, A., Nigro, A., Rebay, S.: Time Integration in the Discontinuous Galerkin Code MIGALE - Unsteady Problems. In: Kroll, N., Hirsch, C., Bassi, F., Johnston, C., Hillewaert, K. (eds.) IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128, pp. 205–230. Springer International Publishing, Berlin (2015)Google Scholar
  3. 3.
    Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid modelling. Phys. Fluids 29, 2152–2160 (1986)CrossRefGoogle Scholar
  4. 4.
    Bassi, F., Botti, L., Colombo, A., Di Pietro, D., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012).  https://doi.org/10.1016/j.jcp.2011.08.018MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hänel, D., Schwane, R., Seider, G.: On the accuracy of upwind schemes for the solution of the Navier–Stokes equations, AIAA Paper 87-1105 CP. In: AIAA, Proceedings of the AIAA 8th Computational Fluid Dynamics Conference (1987)Google Scholar
  6. 6.
    Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.) 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, pp. 99–108. Technologisch Instituut, Antwerpen, Belgium (1997)Google Scholar
  7. 7.
    Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Massa, F.: Linearly implicit Rosenbrock-type Runge–Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows. Comput. Fluids 118, 305–320 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dunham, J.: CFD validation for propulsion system components. Technical Report AR-355. AGARD (1994)Google Scholar
  9. 9.
    Denton, J.D.: Lessons from Rotor 37. J. Thermal Sci. 6, 1–13 (1997)CrossRefGoogle Scholar
  10. 10.
    Bassi, F., Botti, L., Colombo, A., Crivellini, A., Franchina, N., Ghidoni, A.: Assessment of a high-order accurate Discontinuous Galerkin method for turbomachinery flows. Int. J. Comput. Fluid Dyn. 30, 307–328 (2016).  https://doi.org/10.1080/10618562.2016.1198783MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous Galerkin solution of the Reynolds-Averaged Navier–Stokes and \(k\)-\(\omega \) turbulence model equations. Comput. Fluids 34, 507–540 (2005)CrossRefGoogle Scholar
  12. 12.
    Lang, J., Verwer, J.: ROS3P–An accurate third-order Rosenbrock solver designed for parabolic problems. BIT 41, 731–738 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kok, J.C.: A stochastic backscatter model for grey-area mitigation in detached eddy simulations. Flow, Turbul. Combust. (2017).  https://doi.org/10.1007/s10494-017-9809-yCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • F. Bassi
    • 1
  • L. Botti
    • 1
  • A. Colombo
    • 1
    Email author
  • A. Ghidoni
    • 2
  • F. Massa
    • 1
  • G. Noventa
    • 2
  1. 1. Dipartimento di Ingegneria e Scienze ApplicateUniversità degli Studi di BergamoDalmineItaly
  2. 2.Dipartimento di Ingegneria Meccanica e IndustrialeUniversità degli Studi di BresciaBresciaItaly

Personalised recommendations