Advertisement

Application of Polynomial Chaos Expansions for Uncertainty Estimation in Angle-of-Arrival Based Localization

  • Thomas Van der Vorst
  • Mathieu Van Eeckhaute
  • Aziz Benlarbi-Delaï
  • Julien Sarrazin
  • François Quitin
  • François Horlin
  • Philippe De Doncker
Chapter
Part of the PoliTO Springer Series book series (PTSS)

Abstract

For numerous applications of the Internet-of-Things, localization is an essential element. However, due to technological constraints on these devices, standards methods of positioning, such as Global Navigation Satellite System or Time-of-Arrival methods, are not applicable. Therefore, Angle-of-Arrival (AoA) based localization is considered, using a densely deployed set of anchors equipped with arrays of antennas able to measure the Angle-of-Arrival of the signal emitted by the device to be located. The original method presented in this work consists in applying Polynomial Chaos Expansions to this problem in order to obtain statistical information on the position estimate of the device. To that end, it is assumed that the probability density functions of the AoA measurements are known at the anchors. Simulation results show that this method is able to closely approximate the confidence region of the device position.

Keywords

Polynomial chaos expansions Localization Angle-of-Arrival 

Notes

Acknowledgements

This work was supported by F.R.S-FNRS, and by Innoviris through the Copine-IoT project.

References

  1. 1.
    Lin X, Bergman J, Gunnarsson F, Liberg O, Razavi S, Razaghi H, Rydn H, Sui Y (2017) Positioning for the internet of things: a 3GPP perspective. IEEE Commun Mag 55(12):179–185CrossRefGoogle Scholar
  2. 2.
    3GPP TS 22.368 (2014) Service requirements for machine-type communications, V13.1.0, Dec 2014Google Scholar
  3. 3.
    Rico-Alvarino A, Vajapeyam M, Xu H, Wang X, Blankenship Y, Bergman J, Tirronen T, Yavuz E (2016) An overview of 3GPP enhancements on machine to machine communications. IEEE Commun Mag 54(6):14–21CrossRefGoogle Scholar
  4. 4.
    Wang Y-P, Lin X, Adhikary A, Grovlen A et al (2017) A primer on 3GPP narrowband internet of things. IEEE Commun Mag 55(3):117–123CrossRefGoogle Scholar
  5. 5.
    Gomez C, Oller J, Paradellis J (2012) Overview and evaluation of bluetooth low energy: an emerging low-power wireless technology. Sensors 12(9):11734–11753CrossRefGoogle Scholar
  6. 6.
    Liu H, Darabi H, Banerjee P, Liu J (2007) Survey of wireless indoor positioning technique and systems. IEEE Trans Syst Man Cybern Part C 37Google Scholar
  7. 7.
    Fisher S (2014) Observed time difference of arrival (OTDOA) positioning in 3GPP LTE. White Paper, Qualcomm TechnologiesGoogle Scholar
  8. 8.
    3GPP TR 37.857 (2015) Study on indoor positioning enhancements for UTRA and LTEGoogle Scholar
  9. 9.
    Pages-Zamora A, Vidal J, Brooks D (2002) Closed-form solution for positioning based on angle of arrival measurements. In: The 13th IEEE international symposium on personal, indoor and mobile radio communications, vol 4, pp 1522–1526Google Scholar
  10. 10.
    Torrieri D (1984) Statistical theory of passive location systems. IEEE Trans Aerosp Electron Syst AES–20(2):183–198CrossRefGoogle Scholar
  11. 11.
    Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93:964–979CrossRefGoogle Scholar
  12. 12.
    Van der Vorst T, Van Eeckhaute M, Benlarbi-Delaï A, Sarrazin J, Quitin F, Horlin F, De Doncker P (2017) Angle-of-arrival based localization using polynomial chaos expansions. In: Proceedings of the workshop on dependable wireless communications and localization for the IoTGoogle Scholar
  13. 13.
    Godara C (1997) Application of antenna arrays to mobile communications Part II: Beam-forming and direction-of-arrival considerations. Proc IEEE 85(8):1195–1245CrossRefGoogle Scholar
  14. 14.
    Schmidt R (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34:276–280CrossRefGoogle Scholar
  15. 15.
    Wiener N (1938) The homogeneous chaos. Am J Math 60(4):897–936MathSciNetCrossRefGoogle Scholar
  16. 16.
    Soize C, Ghanem R (2004) Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J Sci Comput 26(2):395–410MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li J, Xiu D (2009) A generalized polynomial chaos based ensemble Kalman filter with high accuracy. J Comput Phys 228(15):5454–5469MathSciNetCrossRefGoogle Scholar
  18. 18.
    Du J, Roblin C (2016) Statistical modeling of disturbed antennas based on the polynomial chaos expansion. IEEE Antennas Wirel Propag LettGoogle Scholar
  19. 19.
    Rossi M, Dierck A, Rogier H, Vande Ginste D (2014) A stochastic framework for the variability analysis of textile antennas. IEEE Trans Antennas Propag 62(12):6510–6514MathSciNetCrossRefGoogle Scholar
  20. 20.
    Haarscher A, De Doncker Ph, Lautru D (2011) Uncertainty propagation and sensitivity analysis in ray-tracing simulations. PIER M 21:149–161CrossRefGoogle Scholar
  21. 21.
    Van der Vorst T, Van Eeckhaute M, Benlarbi-Delaï A, Sarrazin J, Horlin F, De Doncker P (2017) Propagation of uncertainty in the MUSIC algorithm using polynomial chaos expansions. In: Proceedings of the 11th European conference on antennas and propagation, pp 820–822Google Scholar
  22. 22.
    Marelli S, Sudret B (2015) UQLab user manual–Polynomial chaos expansions. Chair of Risk, Safety & Uncertainty Quantification, ETH ZurichGoogle Scholar
  23. 23.
    Abramowitz M, Stegun I (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier CorporationGoogle Scholar
  24. 24.
    Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscipl Rev Comput Stat 2(4):433–459CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Van der Vorst
    • 1
    • 2
  • Mathieu Van Eeckhaute
    • 1
  • Aziz Benlarbi-Delaï
    • 2
  • Julien Sarrazin
    • 2
  • François Quitin
    • 1
  • François Horlin
    • 1
  • Philippe De Doncker
    • 1
  1. 1.Université Libre de Bruxelles (ULB)BrusselsBelgium
  2. 2.Laboratoire d’Électronique et Électromagnétisme, UR2Sorbonne UniversitéParisFrance

Personalised recommendations