Advertisement

Stochastic Dosimetry for Radio-Frequency Exposure Assessment in Realistic Scenarios

  • E. Chiaramello
  • S. Fiocchi
  • M. Parazzini
  • P. RavazzaniEmail author
  • J. Wiart
Chapter
Part of the PoliTO Springer Series book series (PTSS)

Abstract

Stochastic dosimetry, combining electromagnetic computational techniques and statistics to build surrogate models, allows assessing exposure to EMF accounting for variability and uncertainty intrinsic of real scenarios. In this study, we present some examples of exposure assessment of children and fetuses to RF devices in uncertain scenarios using stochastic dosimetry. Polynomial chaos expansions and low rank tensor approximations, applied to build surrogate models of Specific Absorption Rate (SAR), permitted a fast estimation of the variability of the exposure due to the variation in the RF source position.

Keywords

Stochastic dosimetry Surrogate models EMF exposure Uncertainty modeling Polynomial-chaos expansions Low-rank-tensor approximations 

Notes

Acknowledgements

This work was supported by the French National Research Program for Environmental and Occupational Health of Anses (EST-2016-2RF-04) Project AMPERE: Advanced MaPping of residential ExposuRE to RF-EMF sources.

References

  1. 1.
    Gregor Dürrenberger MOM, Fröhlich J, Röösli M (2014) EMF monitoring—concepts, activities, gaps and options. Int J Environ Res Public Health 11(9):9460–9479CrossRefGoogle Scholar
  2. 2.
    Van Deventer E, Van Rongen E, Saunders R (2011) WHO research agenda for radiofrequency fields. Bioelectromagnetics 32(5):417–421CrossRefGoogle Scholar
  3. 3.
    Fiocchi S, Markakis IA, Ravazzani P, Samaras T (2013) SAR exposure from UHF RFID reader in adult, child, pregnant woman, and fetus anatomical models. Bioelectromagnetics 34(6):443–452CrossRefGoogle Scholar
  4. 4.
    Tateno A, Nagaoka T, Saito K, Watanabe S, Takahashi M (2015) Variability of specific absorption rate of human body for various configurations of tablet computer in vicinity of abdomen. IEICE Trans Commun 98(7):1173–1181CrossRefGoogle Scholar
  5. 5.
    Findlay RP, Dimbylow PJ (2010) SAR in a child voxel phantom from exposure to wireless computer networks (Wi-Fi). Phys Med Biol 55(15):N405CrossRefGoogle Scholar
  6. 6.
    Wiart J (2016) Radio-frequency human exposure assessment: from deterministic to stochastic methods. Wiley, ISTECrossRefGoogle Scholar
  7. 7.
    Sudret B, Marelli S, Wiart J (2017) Surrogate models for uncertainty quantification: an overview. In: 11th European conference on antennas and propagation (EUCAP). IEEEGoogle Scholar
  8. 8.
    Chiaramello E, Parazzini M, Fiocchi S, Ravazzani P, Wiart J (2017) Assessment of fetal exposure to 4G LTE tablet in realistic scenarios: effect of position, gestational age and frequency. IEEE J Electromagn RF Microw Med Biol 1:26–33CrossRefGoogle Scholar
  9. 9.
    Chiaramello E, Parazzini M, Fiocchi S, Ravazzani P, Wiart J Stochastic dosimetry based on low rank tensor approximations for the assessment of children exposure to WLAN Source. IEEE J Electromagn RF Microw Med Biol 2(2):131–137.  https://doi.org/10.1109/JERM.2018.2825018CrossRefGoogle Scholar
  10. 10.
    Chiaramello E, Fiocchi S, Ravazzani P, Parazzini M (2017) Stochastic dosimetry for the assessment of children exposure to uniform 50 Hz magnetic field with uncertain orientation. Biomed Res Int 1–14:2017Google Scholar
  11. 11.
    Fiocchi S, Chiaramello E, Parazzini M, Ravazzani P (2018) Influence of tissue conductivity on foetal exposure to extremely low frequency magnetic fields at 50 Hz using stochastic dosimetry. Plos ONE.  https://doi.org/10.1371/journal.pone.0192131CrossRefGoogle Scholar
  12. 12.
    Wiener N (1938) The homogeneous chaos. Amer J Math 60(4):897–936MathSciNetCrossRefGoogle Scholar
  13. 13.
    Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367MathSciNetCrossRefGoogle Scholar
  14. 14.
    Konakli K, Sudret B (2016) Polynomial meta-models with canonical low-rank approximations: numerical insights and comparison to sparse polynomial chaos expansions. J Comput Phys 321:1144–1169MathSciNetCrossRefGoogle Scholar
  15. 15.
    Xiu D, Karniadakis GE (2002) The wiener–askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644MathSciNetCrossRefGoogle Scholar
  16. 16.
    Blatman G, Sudret B, Berveiller M (2007) Quasi random numbers in stochastic finite element analysis. Mécanique Ind. 8(3):289–297CrossRefGoogle Scholar
  17. 17.
    Christ A et al (2012) Exposure of the human body to professional and domestic induction cooktops compared to the basic restrictions. Bioelectromagn 33(8):695–705CrossRefGoogle Scholar
  18. 18.
    Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: 1. Literature survey. Phys Med Biol 41(11):2231–2249CrossRefGoogle Scholar
  19. 19.
    Ghanmi A, Varsier N, Hadjem A, Conil E, Wiart J, Person C (2014) Design and validation of a generic LTE tablet for SAR assessment studies. In: Proceedings 8th European conference antennas propagation, pp 2421–2425Google Scholar
  20. 20.
    Gosselin M-C, Neufeld E, Moser H, Huber E, Farcito S, Gerber L, Jedensjö M, Hilber I, Di Gennaro F, Lloyd B, Cherubini E, Szczerba D, Kainz W, Kuster N (2014) Development of a new generation of high-resolution anatomical models for medical device evaluation: the virtual population 3.0. Phys Med Biol 59(18):5287–5303CrossRefGoogle Scholar
  21. 21.
    Pinto Y, Wiart J (2017) Statistical analysis and surrogate modeling of indoor exposure induced from a WLAN source. In: 2017 11th European conference on antennas and propagation (EUCAP). IEEE, pp 806–810Google Scholar
  22. 22.
    International Commission on Non-Ionizing Radiation Protection (1998) ICNIRP guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields. Health Phys 74:494–522Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • E. Chiaramello
    • 1
  • S. Fiocchi
    • 1
  • M. Parazzini
    • 1
  • P. Ravazzani
    • 1
    Email author
  • J. Wiart
    • 2
  1. 1.Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell’Informazione e delle Telecomunicazioni CNR IEIITMilanItaly
  2. 2.Télécom ParisTech, LTCI University Paris SaclayParisFrance

Personalised recommendations