Advertisement

Applied Intelligent Physical Compliance

  • Daniel Sebastian Leidner
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 127)

Abstract

This chapter shall extend the horizon of this manuscript beyond daily household chores and gives an outlook to the possibilities that emerge with the availability of cognitive robots with human-like manipulation capabilities. In particular, this chapter applies the developed reasoning methods to an actual space robotics mission.

References

  1. Birkenkampf, Peter. 2013. Entwicklung Eines Human-Robot Interfaces Zur Visualisierung Interner Weltzustände und Steuerung potentieller Manipulationsfähigkeiteneines semiautonomen Roboters. Master’s thesis, Technische Universität München.Google Scholar
  2. Birkenkampf, Peter, Daniel Leidner, and Christoph Borst. 2014. A Knowledge-driven Shared Autonomy Human-robot Interface for Tablet Computers. In Proceedings of the IEEE/RAS International Conference on Humanoid Robots (ICHR), pp. 152–159.Google Scholar
  3. Blake, David F., Richard V. Morris, G. Kocurek, S.M. Morrison, Robert T. Downs, D. Bish, D.W. Ming, K.S. Edgett, D. Rubin, W. Goetz, et al. 2013. Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science 341 (6153): 1239505.CrossRefGoogle Scholar
  4. Birkenkampf, Peter, Daniel Leidner, and Neal Y. Lii. 2017. Ubiquitous User Interface Design for Space Robotic Operation. In Proceedings of the 14th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA).Google Scholar
  5. Diftler, Myron A, J.S. Mehling, Muhammad E Abdallah, Nicolaus A Radford, Lyndon B Bridgwater, Adam M Sanders, Roger Scott Askew, D Marty Linn, John D Yamokoski, FA Permenter, et al. 2011. Robonaut 2-the First Humanoid Robot in Space. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2178–2183. IEEE.Google Scholar
  6. Krueger, Thomas, and André Schiele. 2015. Preparations for the Haptics-2 Space Experiment on-board the International Space Station. In Proceedings of the 13th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA).Google Scholar
  7. Lii, Neal Y , Daniel Leidner, André Schiele, Peter Birkenkampf, Ralph Bayer, Benedikt Pleintinger, Andreas Meissner, and Andreas Balzer. 2015a. Imulating an Extraterrestrial Environment for Robotic Space Exploration: The METERON SUPVIS Justin Telerobotic Experiment and the SOLEX Proving Ground. In Proceedings of the 13th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA).Google Scholar
  8. Lii, Neal Y, Daniel Leidner, André Schiele, Peter Birkenkampf, Benedikt Pleintinger, and Ralph Bayer. 2015b. Command Robots from Orbit with Supervised Autonomy: An Introduction to the METERON SUPVIS Justin Telerobotic Experiment. In Proceedings of the ACM/IEEE International Conference on Human-robots Interaction (HRI), pp. 53–54.Google Scholar
  9. Lii, Neal Y., Daniel Leidner, Peter Birkenkampf, Benedikt Pleintinger, Ralph Bayer, and Thomas Krueger. 2017. Toward Scalable Intuitive Teleoperation of Robots for Space Deployment with the METERON SUPVIS Justin Experiment. In Proceedings of the 14th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA).Google Scholar
  10. Manzey, Dietrich, and Bernd Lorenz. 1998. Mental Performance During Short-term and Long-term Spaceflight. Brain research reviews 28 (1): 215–221.CrossRefGoogle Scholar
  11. Leidner, Daniel, Peter Birkenkampf, Neal Y. Lii, and Christoph Borst. 2014a. Enhancing Supervised Autonomy for Extraterrestrial Applications by Sharing Knowledge Between Humans and Robots. In Proceedings of the Workshop on how to make best use of a Human Supervisor for Semi-autonomous Humanoid Operation at IEEE-RAS International Conference on Humanoid Robots (ICHR).Google Scholar
  12. Leidner, Daniel, Neal Y. Lii, and Peter Birkenkampf. 2017. Context-Aware Mission Control for Astronaut-robot Collaboration. In Proceedings of the 14th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA).Google Scholar
  13. Pelton, Joseph N. 2015. Current Space Debris Remediation and On-orbit Servicing Initiatives. In New Solutions for the Space Debris Problem, pp. 11–29. Springer.Google Scholar
  14. Rouanet, Pierre, Pierre-Yves Oudeyer, Fabien Danieau, and David Filliat. 2013. The Impact of Human-robot Interfaces on The Learning Of Visual Objects. IEEE Transactions on Robotics 29 (2): 525–541.CrossRefGoogle Scholar
  15. Schiele, André. 2011. METERON—Validating Orbit-to-ground Telerobotics Operations Technologies. In Proceedings of the 11th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA).Google Scholar
  16. Schiele, André, Manuel Aiple, Thomas Krueger, Frank van der Hulst, Stefan Kimmer, Jan Smisek, and Emiel den Exter. 2016. Haptics-1: Preliminary Results From the First Stiffness JND Identification Experiment in Space. In Proceedings of the International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 13–22. Springer.Google Scholar
  17. Schiele, André. 2015. Towards the Interact Space Experiment: Controlling an Outdoor Robot on Earth’s Surface from Space. In Proceedings of the 13th Symposium On Advanced Space Technologies for Robotics And Automation (ASTRA).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Robotics and MechatronicsGerman Aerospace Center (DLR)WesslingGermany

Personalised recommendations