Advertisement

Big Data is Power: Business Value from a Process Oriented Analytics Capability

  • Rogier van de Wetering
  • Patrick Mikalef
  • John Krogstie
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 339)

Abstract

Big data analytics (BDA) has the potential to provide firms with competitive benefits. Despite its massive potential, the conditions and required complementary resources and capabilities through which firms can gain business value, are by no means clear. Firms cannot ignore the influx of data, mostly unstructured, and will need to invest in BDA increasingly. By doing so, they will have to, e.g., necessitate new specialist competencies, privacy, and regulatory issues as well as other structural and cost considerations. Past research contributions argued for the development of idiosyncratic and difficult to imitate firm capabilities. This study builds upon resources synchronization theories and examines the process to obtain business value from BDA. In this study, we use data from 27 cases studies from different types of industries. Through the coding analyses of interview transcripts, we identify the contingent resources that drive, moderate and condition the value of a BDA capability throughout different phases of adoption. Our results contribute to a better understanding of the importance of BDA resources and the process and working mechanisms through which to leverage them toward business value. We conclude that our synthesized configurational model for BDA capabilities is a useful basis for future research.

Keywords

Big data Big data analytics capabilities Qualitative coding Resource-based view (RBV) Process stages 

Notes

Acknowledgments

Open image in new window This project has received funding from the European Union’s Horizon 2020 research and innovation programme, under the Marie Sklodowska-Curie grant agreement No. 704110.

References

  1. 1.
    Constantiou, I.D., Kallinikos, J.: New games, new rules: big data and the changing context of strategy. J. Inf. Technol. 30(1), 44–57 (2015)CrossRefGoogle Scholar
  2. 2.
    Goes, P.B.: Editor’s comments: big data and IS research. MIS Q. 38(3), p. iii-viii (2014)Google Scholar
  3. 3.
    Akter, S., et al.: How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 182, 113–131 (2016)CrossRefGoogle Scholar
  4. 4.
    Wamba, S.F., et al.: Big data analytics and firm performance: effects of dynamic capabilities. J. Bus. Res. 70, 356–365 (2017)CrossRefGoogle Scholar
  5. 5.
    McAfee, A., Brynjolfsson, E., Davenport, T.H.: Big data: the management revolution. Harvard Bus. Rev. 90(10), 60–68 (2012)Google Scholar
  6. 6.
    Van de Wetering, R., Mikalef, P., Pateli, A.: A strategic alignment model for IT flexibility and dynamic capabilities: toward an assessment tool. In: The Proceedings of the Twenty-Fifth European Conference on Information Systems (ECIS), Guimarães, Portugal (2017)Google Scholar
  7. 7.
    Mikalef, P., et al.: Big data analytics capabilities: a systematic literature review and research agenda. Inf. Syst. e-Bus. Manag. 16, 1–32 (2017)Google Scholar
  8. 8.
    Grover, V., et al.: Creating strategic business value from big data analytics: a research framework. J. Manag. Inf. Syst. 35(2), 388–423 (2018)CrossRefGoogle Scholar
  9. 9.
    Barney, J.: Firm resources and sustained competitive advantage. J. Manag. 17(1), 99–120 (1991)Google Scholar
  10. 10.
    Chamberlin, E.H.: Monopolistic or imperfect competition? Q. J. Econ. 51(4), 557–580 (1937)CrossRefGoogle Scholar
  11. 11.
    Makadok, R.: Toward a synthesis of the resource-based and dynamic-capability views of rent creation. Strateg. Manag. J. 22(5), 387–401 (2001)CrossRefGoogle Scholar
  12. 12.
    Amit, R., Schoemaker, P.J.: Strategic assets and organizational rent. Strateg. Manag. J. 14(1), 33–46 (1993)CrossRefGoogle Scholar
  13. 13.
    Pavlou, P.A., El Sawy, O.A.: From IT leveraging competence to competitive advantage in turbulent environments: the case of new product development. Inf. Syst. Res. 17(3), 198–227 (2006)CrossRefGoogle Scholar
  14. 14.
    Ravichandran, T., Lertwongsatien, C.: Effect of information systems resources and capabilities on firm performance: a resource-based perspective. J. Manag. Inf. Syst. 21(4), 237–276 (2005)CrossRefGoogle Scholar
  15. 15.
    Van de Wetering, R., Versendaal, J., Walraven, P.: Examining the relationship between a hospital’s IT infrastructure capability and digital capabilities: a resource-based perspective. In: The Proceedings of the Twenty-Fourth Americas Conference on Information Systems (AMCIS). AIS, New Orleans (2018)Google Scholar
  16. 16.
    Gantz, J., Reinsel, D.: The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. IDC iView: IDC Anal. Futur. 2012(2007), 1–16 (2012)Google Scholar
  17. 17.
    Davenport, T.H.: Competing on analytics. Harv. Bus. Rev. 84(1), 98 (2006)Google Scholar
  18. 18.
    Eisenhardt, K.M., Martin, J.A.: Dynamic capabilities: what are they? Strateg. Manag. J. 21(10–11), 1105–1121 (2000)CrossRefGoogle Scholar
  19. 19.
    Kamioka, T., Tapanainen, T.: Organizational use of big data and competitive advantage-exploration of antecedents. In: PACIS (2014)Google Scholar
  20. 20.
    Gupta, M., George, J.F.: Toward the development of a big data analytics capability. Inf. Manag. 53(8), 1049–1064 (2016)CrossRefGoogle Scholar
  21. 21.
    Eisenhardt, K.M., Graebner, M.E.: Theory building from cases: opportunities and challenges. Acad. Manag. J. 50(1), 25–32 (2007)CrossRefGoogle Scholar
  22. 22.
    Benbasat, I., Goldstein, D.K., Mead, M.: The case research strategy in studies of information systems. MIS Q. 11(3), 369–386 (1987)CrossRefGoogle Scholar
  23. 23.
    Battistella, C., et al.: Cultivating business model agility through focused capabilities: a multiple case study. J. Bus. Res. 73, 65–82 (2017)CrossRefGoogle Scholar
  24. 24.
    Erevelles, S., Fukawa, N., Swayne, L.: Big data consumer analytics and the transformation of marketing. J. Bus. Res. 69(2), 897–904 (2016)CrossRefGoogle Scholar
  25. 25.
    Janssen, M., van der Voort, H., Wahyudi, A.: Factors influencing big data decision-making quality. J. Bus. Res. 70, 338–345 (2017)CrossRefGoogle Scholar
  26. 26.
    Braganza, A., et al.: Resource management in big data initiatives: processes and dynamic capabilities. J. Bus. Res. 70, 328–337 (2017)CrossRefGoogle Scholar
  27. 27.
    Espinosa, J.A., Armour, F.: The big data analytics gold rush: a research framework for coordination and governance. In: 2016 49th Hawaii International Conference on System Sciences (HICSS). IEEE (2016)Google Scholar
  28. 28.
    Yin, R.K.: Case Study Research: Design and Methods. SAGE publications, Thousand Oaks (2013)Google Scholar
  29. 29.
    Miles, M.B., Huberman, A.M.: Qualitative Data Analysis: An Expanded Sourcebook, 2nd edn. SAGE Publications, Thousand Oaks (1994)Google Scholar
  30. 30.
    Boudreau, M.-C., Gefen, D., Straub, D.W.: Validation in information systems research: a state-of-the-art assessment. MIS Q. 25, 1–16 (2001)CrossRefGoogle Scholar
  31. 31.
    Mikalef, P., van de Wetering, R., Krogstie, J.: Big data enabled organizational transformation: the effect of inertia in adoption and diffusion. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 320, pp. 135–147. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93931-5_10CrossRefGoogle Scholar
  32. 32.
    Mikalef, P., et al.: Information governance in the big data era: aligning organizational capabilities. In: Proceedings of the 51st Hawaii International Conference on System Sciences (2018)Google Scholar
  33. 33.
    Fiss, P.C.: A set-theoretic approach to organizational configurations. Acad. Manag. Rev. 32(4), 1180–1198 (2007)CrossRefGoogle Scholar
  34. 34.
    Aral, S., Weill, P.: IT assets, organizational capabilities, and firm performance: how resource allocations and organizational differences explain performance variation. Organ. Sci. 18(5), 763–780 (2007)CrossRefGoogle Scholar
  35. 35.
    Van de Wetering, R., Mikalef, P., Helms, R.: Driving organizational sustainability-oriented innovation capabilities: a complex adaptive systems perspective. Curr. Opin. Environ. Sustain. 28, 71–79 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rogier van de Wetering
    • 1
  • Patrick Mikalef
    • 2
  • John Krogstie
    • 2
  1. 1.Faculty of Management, Science and TechnologyOpen University of the NetherlandsHeerlenThe Netherlands
  2. 2.Department of Computer ScienceNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations