Decentralized Energy Networks Based on Blockchain: Background, Overview and Concept Discussion

  • Mario PichlerEmail author
  • Marcus Meisel
  • Andrija Goranovic
  • Kurt Leonhartsberger
  • Georg Lettner
  • Georgios Chasparis
  • Heribert Vallant
  • Stefan Marksteiner
  • Hemma Bieser
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 339)


This paper provides a snapshot of the globally ongoing decentralization of (business) relations in the energy sector. This tendency can be observed in other domains as well and is accompanied by new digital technological developments. Blockchain technology is assigned disruptive potential when it comes to realize those decentralization ideas. This hype about Blockchain is mainly company-driven without a solid academic basis yet. The authors are currently involved in several research efforts for utilizing distributed energy resources like photovoltaic systems, batteries and electric cars for the setup of energy communities and marketplaces. The paper, therefore, presents detailed investigations of background and motivations for decentralization and the building of (local) energy communities and (peer-to-peer) marketplaces for sustainable utilization of renewable energies. An overview of recent related Blockchain-based works is presented, and the current state and feasibility for the realization of the envisioned decentralized solutions are discussed. In this way, the work aimed at contributing to a research-based decision foundation for upcoming Blockchain-based decentralization efforts.


Energy decentralization (Local) renewable energy communities Blockchain-based energy networks 



The research reported in this paper has been supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry for Digital and Economic Affairs, and the Province of Upper Austria in the frame of the COMET center SCCH.


  1. 1.
    Nakamoto, S.: Bitcoin: A Peer-to-peer Electronic Cash System (2008)Google Scholar
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    Komendantova, N.: Energy transition in the Austrian climate and energy model regions: a multi-risk participatory governance perspective on regional resilience. Procedia Eng. 212, 15–21 (2018). Scholar
  11. 11.
    Albadi, M.H., El-Saadany, E.F.: A summary of demand response in electricity markets. Electric Power Syst. Res. 78(11), 1989–1996 (2008). Scholar
  12. 12.
    Conejo, A.J., Morales, J.M., Baringo, L.: Real-time demand response model. IEEE Trans. Smart Grid 1(3), 236–242 (2010)CrossRefGoogle Scholar
  13. 13.
    Ruiz, N., Cobelo, I., Oyarzabal, J.: A direct load control model for virtual power plant management. IEEE Trans. Power Syst. 24(2), 959–966 (2009)CrossRefGoogle Scholar
  14. 14.
    Triki, C., Violi, A.: Dynamic pricing of electricity in retail markets. 4OR 7(1), 21–36 (2009)CrossRefGoogle Scholar
  15. 15.
    Xu, Y., Li, N., Low, S.H.: Demand response with capacity constrained supply function bidding. IEEE Trans. Power Syst. 31(2), 1377–1394 (2016)CrossRefGoogle Scholar
  16. 16.
    Chen, C., Wang, J., Kishore, S.: A distributed direct load control approach for large-scale residential demand response. IEEE Trans. Power Syst. 29(5), 2219–2228 (2014)CrossRefGoogle Scholar
  17. 17.
    Nguyen, H.K., Song, J.B., Han, Z.: Distributed demand side management with energy storage in smart grid. IEEE Trans. Parallel Distr. Syst. 26(12), 3346–3357 (2015)CrossRefGoogle Scholar
  18. 18.
    Li, N., Chen, L., Dahleh, M.A.: Demand response using linear supply function bidding. IEEE Trans. Smart Grid 6(4), 1827–1838 (2015)CrossRefGoogle Scholar
  19. 19.
    Wagner, M., Kuba, M., Oeder, A.: Smart grid cyber security: a german perspective. In: 2012 International Conference on Smart Grid Technology, Economics and Policies (SG-TEP), pp. 1–4, Nuremberg (2012)Google Scholar
  20. 20.
    Liang, G., Weller, S.R., Zhao, J., Luo, F., Dong, Z.Y.: The 2015 Ukraine Blackout: Implications for False Data Injection Attacks. IEEE Trans. Power Syst. 32(4), 3317–3318 (2017)CrossRefGoogle Scholar
  21. 21.
    Tang, Y., Chen, Q., Li, M., Wang, Q., Ni, M., Fu, X.Y.: Challenge and evolution of cyber attacks in cyber physical power system. In: 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 857–862, Xi’an (2016)Google Scholar
  22. 22.
    European Parliament and Council: Regulation on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (Data Protection Directive), L119, 4/5/2016, pp. 1–88 (2016)Google Scholar
  23. 23.
    Sheffer, Y., et al.: Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) (No. RFC 7525). Internet Engineering Task Force. Internet Requests for Comments (2015)Google Scholar
  24. 24.
    Schwerin, S.: Blockchain and privacy protection in the case of the european general data protection regulation (GDPR): a delphi study. JBBA 1(1), 1–75 (2018)CrossRefGoogle Scholar
  25. 25.
    Dorri, A., Kanhere, S.S., Jurdak, R., Gauravaram, P.: Blockchain for IoT security and privacy: the case study of a smart home. In: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 618–623, Kona, HI (2017)Google Scholar
  26. 26.
    Yli-Huumo, J., Ko, D., Choi, S., Park, S., Smolander, K.: Where is current research on blockchain technology? a systematic review. PLoS ONE 11(10), e0163477 (2016). Scholar
  27. 27.
    Goranović, A., Meisel, M., Fotiadis, L., Wilker, S., Treytl, A., Sauter, T.: Blockchain applications in microgrids: an overview of current projects and concepts. 43rd Annual Conference of the IEEE IES, IECON 2017, pp. 6153–6158, Beijing (2017)Google Scholar
  28. 28.
    Donnerer, D., Lacassagne, S.: Blockchain and Energy Transition: What challenges for cities? Energy Cities, Licence Creative Commons Attribution (2018).
  29. 29.
    First Ever Blockchain Energy Trade Completed in the UK.
  30. 30.
  31. 31.
  32. 32.
  33. 33.
  34. 34.
  35. 35.
  36. 36.
  37. 37.
  38. 38.
  39. 39.
  40. 40.
    Energy Web Foundation – EW Origin.
  41. 41.
  42. 42.
  43. 43.
    Blockchain im Block: Strom-Sharing im Wiener Viertel Zwei.
  44. 44.
  45. 45.
    Moisl, F., Pichler, M., Chasparis, G., Leonhartsberger, K., Lettner, G.: Development of a decentralized small battery energy storage network to compensate for schedule deviations. In: D. Schulze (ed.), NEIS 2017: Conference on Sustainable Energy Supply and Energy Storage Systems, pp. 169–174, VDE Verlag, September (2017)Google Scholar
  46. 46.
    Leonhartsberger, K., et al.: System relevant applications for battery storage systems. In Proceedings of the 33rd PLEA International Conference (PLEA 2017), vol. III, pp. 4595–4602, July (2017)Google Scholar
  47. 47.
  48. 48.
  49. 49.
    Markey-Towler, B.: Anarchy, blockchain and utopia: a theory of political- socioeconomic systems organised using blockchain. The JBBA 1(1), 1–14 (2018)CrossRefGoogle Scholar
  50. 50.
    Supper, S., Keding, M., Lettner, G., Schwab, T., Stricker, K.: Green Energy Lab: Accelerating User-centric Integrated Solutions for the Renewable Energy System of Tomorrow (2017).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mario Pichler
    • 1
    Email author
  • Marcus Meisel
    • 2
  • Andrija Goranovic
    • 2
  • Kurt Leonhartsberger
    • 3
  • Georg Lettner
    • 4
  • Georgios Chasparis
    • 1
  • Heribert Vallant
    • 5
  • Stefan Marksteiner
    • 5
  • Hemma Bieser
    • 6
  1. 1.Software Competence Center Hagenberg GmbH (SCCH)HagenbergAustria
  2. 2.Institute of Computer Technology (ICT)TU WienViennaAustria
  3. 3.Department of Renewable EnergyUniversity of Applied Sciences Technikum WienViennaAustria
  4. 4.Energy Economics Group (EEG)TU WienViennaAustria
  5. 5.DIGITAL – Institute of Information and Communication TechnologiesJoanneum ResearchGrazAustria
  6. 6.AvantsmartOberwaltersdorfAustria

Personalised recommendations