Blockchain-Based Management of Shared Energy Assets Using a Smart Contract Ecosystem

  • Manuel UtzEmail author
  • Simon Albrecht
  • Thorsten Zoerner
  • Jens Strüker
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 339)


Energy markets are facing challenges regarding a changing energy generation and consumption structure, as well as the coordination of an increasing number of assets, devices and stakeholders. We address these challenges by introducing a blockchain-based smart contract ecosystem as our contribution to extant research. Apart from blockchain-specific benefits (e.g. data integrity and smart contract execution), the ecosystem fosters energy-blockchain research through the creation of digital assets. Doing so, we address research gaps identified by previous authors. From our work, we can derive economic implications regarding the foundation of local energy markets, the incentivization of grid-stabilizing behavior and the settlement of collective action problems.


Blockchain Energy Smart contract Asset management Proof-of-Authority Ethereum Microgrid 


  1. 1.
    Yli-Huumo, J., Ko, D., Choi, S., Park, S., Smolander, K.: Where is current research on blockchain technology?—a systematic review. PLoS ONE 11, e0163477 (2016)CrossRefGoogle Scholar
  2. 2.
    Risius, M., Spohrer, K.: A blockchain research framework - what we (don’t) know, where we go from here, and how we will get there. Bus. Inf. Syst. Eng. 59, 385–409 (2017)CrossRefGoogle Scholar
  3. 3.
    Beck, R., Avital, M., Rossi, M., Thatcher, J.B.: Blockchain technology in business and information systems research. Bus. Inf. Syst. Eng. 59, 381–384 (2017)CrossRefGoogle Scholar
  4. 4.
    Crnkovic, G.D.: Constructive research and info-computational knowledge generation. In: Magnani, L., Carnielli, W., Pizzi, C. (eds.) Studies in Computational Intelligence, vol. 314, pp. 359–380. Springer, Berlin Heidelberg (2010). Scholar
  5. 5.
    Green, J., Newman, P.: Citizen utilities: the emerging power paradigm. Energy Policy 105, 283–293 (2017)CrossRefGoogle Scholar
  6. 6.
    Fridgen, G., Kahlen, M., Ketter, W., Rieger, A., Thimmel, M.: One rate does not fit all: an empirical analysis of electricity tariffs for residential microgrids. Appl. Energy 210, 800–814 (2018)CrossRefGoogle Scholar
  7. 7.
    Helms, T.: Asset transformation and the challenges to servitize a utility business model. Energy Policy. 91, 98–112 (2016)CrossRefGoogle Scholar
  8. 8.
    Mengelkamp, E., Gärttner, J., Rock, K., Kessler, S., Orsini, L., Weinhardt, C.: Designing microgrid energy markets. Appl. Energy 210, 870–880 (2017)CrossRefGoogle Scholar
  9. 9.
    Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D., Weinhardt, C.: A blockchain-based smart grid: towards sustainable local energy markets. Comput. Sci. Res. Dev. 33, 207–214 (2018)CrossRefGoogle Scholar
  10. 10.
    Albrecht, S., Reichert, S., Schmid, J., Strüker, J., Neumann, D., Fridgen, G.: Dynamics of blockchain implementation - a case study from the energy sector. In: Proceedings of the 51st Hawaii International Conference on System Sciences, pp. 3527–3536 (2018)Google Scholar
  11. 11.
    Glaser, F.: Pervasive decentralisation of digital infrastructures: a framework for blockchain enabled system and use case analysis. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017)Google Scholar
  12. 12.
    Zoerner, T.: Fury network energychain.
  13. 13.
    Vogelsteller, F., Buterin, V.: ERC-20 Token Standard, September 2017. https//

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manuel Utz
    • 1
    Email author
  • Simon Albrecht
    • 1
    • 2
  • Thorsten Zoerner
    • 3
  • Jens Strüker
    • 1
  1. 1.Fresenius University of Applied SciencesFrankfurtGermany
  2. 2.University of Freiburg – Information Systems ResearchFreiburgGermany
  3. 3.StromDAO UGMauerGermany

Personalised recommendations