Survey of the Deformation Quantization of Commutative Families

  • G. SharyginEmail author
  • A. Konyaev
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 273)


In this survey chapter we discuss various approaches and known results, concerning the following question: when is it possible to find a commutative extension of a Poisson-commutative subalgebra in \(C^\infty (X)\) (where X is a Poisson manifold) to a commutative subalgebra in the deformation quantization of X, the algebra \(\mathscr {A}(X)\). A case of particular interest, which we consider with certain detail is the situation, when \(X=\mathfrak g^*\) and the commutative subalgebra is constructed by the argument shift method.


Deformation quantization Poisson commutative subalgefbras (Quantum) integrable systems 


  1. 1.
    Belov-Kanel, A., Kontsevich, M.: The Jacobian conjecture is stably equivalent to the Dixmier conjecture. Mosc. Math. J. 7(2), 209–218 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Talalaev, D.: The quantum Gaudin system. Funct. Anal. Appl. 40(1), 73–77 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Vinberg, E.: On certain commutative subalgebras of a universal enveloping algebra. MATH. USSR-IZV 36(1), 1–22 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Tarasov, A.: On some commutative subalgebras of the universal enveloping algebra of the Lie algebra \(\mathfrak{gl}(n,\mathbb{C})\). Sb. Math. 191(9), 1375–1382 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Rybnikov, L.: The argument shift method and the Gaudin model. Funct. Anal. Appl. 40(3), 188–199 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Molev, A.: Feigin–Frenkel center in types \(B, C\) and \(D\). Invent. Math. 191(1), 1–34 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Manakov, S.: Note on the integration of Euler’s equations of the dynamics of an \(n\)-dimensional rigid body. Funct. Anal. Appl. 10(4), 328–329 (1976)zbMATHGoogle Scholar
  9. 9.
    Mishchenko, A., Fomenko, A.: Euler equations on finite-dimensional Lie groups. MATH. USSR-IZV 12(2), 371–389 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kosmann-Schwarzbach, Y., Magri, F.: Lax-Nijenhuis operators for integrable systems. J. Math. Phys. 37(12), 6173–6197 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Cahen, M., Gutt, S., De Wilde, M.: Local cohomology of the algebra of smooth functions on a connected manifold. Lett. Math. Phys. 4, 157–167 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Calaque, D., van den Bergh, M.: Hochschild cohomology and Atiyah classes. Adv. Math. 224(5), 1839–1889 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Garay, M., van Straten, D.: Classical and quantum integrability. Mosc. Math. J. 10(3), 519–545 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Sharygin, G., Talalaev, D.: Deformation quantization of integrable systems. J. Noncommut. Geom. 11(2), 741–756 (2017). arXiv:1210.2840MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Sharygin, G.: Deformation quantization and the action of Poisson vector fields. Lobachevskii J. Math. 38(6), 1093–1107 (2017). arXiv:1612.02673MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kosmann-Schwarzbach, Y.: Derived brackets. Lett. Math. Phys. 69(1), 61–87 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gutt, S.: An explicit \(\ast \)-product on the Cotangent Bundle of a Lie group. Lett. Math. Phys. 7(3), 249–258 (1983)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Fedosov, B.: Index theorems. Partial differential equations–8, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr. 65, 165–268. VINITI, Moscow (1991)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Mechanics and Mathematics“Lomonosov” Moscow State UniversityMoscowRussia

Personalised recommendations