Quadro-Cubic Cremona Transformations and Feigin-Odesskii-Sklyanin Algebras with 5 Generators
Abstract
We study different algebraic and geometric properties of Heisenberg (H-) invariant Poisson polynomial algebras with 5 generators. These algebras are unimodular, and the elliptic Feigin-Odesskii-Sklyanin Poisson algebras \(q_{n,k}(Y)\) constitute the main important example. We discuss all the quadratic H-invariant Poisson tensors on \({\mathbb C}^5\). For the Sklyanin algebras \(q_{5,1}(Y)\) and \(q_{5;2}(Y)\), we explicitly write the Poisson morphisms on the moduli space of the vector bundles on the normal elliptic curve Y in \(\mathbb P^4\), studied by Polishchuk and Odesskii-Feigin as the quadro-cubic Cremona transformation on \(\mathbb P^4\).
Keywords
Cremona transformations Feigin-Odesskii-Sklyanin algebras Sklyanin elliptic algebrasNotes
Acknowledgements
During this work the author benefited from many useful discussions and suggestions of many colleagues. He is thankful to Brent Pym with whom he discussed the holomorphic Poisson geometry, to Sasha Polishchuk for his help with Algebraic Geometry and to Alexander Odesskii who taught him the Elliptic Algebras. Igor Reider had clarified some question and helped to understand the relation with his own unpublished results.
Some parts of this paper are based on previously published results of the author in a collaboration with Giovanni Ortenzi and Serge Tagne Pelap as well as with A. Odesskii. He is grateful to them for their collaboration.
A special thank to Rubik Pogossyan who had verified with Mathematica Package the author’s hint statement about the form and exact value of the determinant of the Jacobian for cubic “Inverse” Cremona map.
He had benefited from a lot of numerous conversations with Boris Feigin and Alexei Gorodentsev on various related subjects.
Finally, this work would have never been written without two author’s talks on the Moscow HSE Bogomolov Laboratory Seminar in June 2016 and on the 1st International Conference of Mathematical Physics at Kezenoy-Am in November 2016. He greatly acknowledges the invitation of Misha Verbitsky to Moscow and of V. Buchstaber and A. Mikhailov to the Chechen Republic. His special thanks to Dima Grinev and Sotiris Konstantinou-Rizos for their hospitality, excellent organisation of the Conference at Kezenoy-Am and inspiration. He also thanks Sotiris Konstantinou-Rizos for his great patience and valuable help while the text was being prepared to submission.
His work was partly supported by the Russian Foundation for Basic Research (Projects 18-01-00461 and 16-51-53034-GFEN). Part of this work was carried out within the framework of the State Programme of the Ministry of Education and Science of the Russian Federation, project 1.12873.2018/12.1.
References
- 1.Artin, M., Schelter, W.F.: Graded algebras of global dimension \(3\). Adv. Math. 66(2), 171–216 (1987)MathSciNetCrossRefGoogle Scholar
- 2.Atiyah, M.: Vector bundles over an elliptic curves. Proc. Lond. Math. Soc. VII(3), 414-452 (1957)MathSciNetCrossRefGoogle Scholar
- 3.Auret, A., Decker, W., Hulek, K., Popesku, S., Ranestad, K.: The geometry of Bielliptic surfaces in \(\mathbb{P}^4\). Int. J. of Math. 4, 873–902 (1993)MathSciNetCrossRefGoogle Scholar
- 4.Auret, A., Decker, W., Hulek, K., Popesku, S., Ranestad, K.: Syzygies of abelian and bielliptic surfaces in \(\mathbb{P}^4\). Int. J. Math. 08, 849 (1997)MathSciNetCrossRefGoogle Scholar
- 5.Bart, W., Hulek, K., Moore, R.: Shioda modular surface \(S(5)\) and the Horrocks-Mumford bundle, Vector bundles on algebraic varieties. In: Papers presented at the Bombay colloquim 1984, pp. 35-106. Oxford University Press, Bombay (1987)Google Scholar
- 6.Bianchi, L.: Ueber die Normsalformen dritter und fünfter Stufe des Elliptischen Integrals Ersten Gattung. Math. Ann. 17, 234–262 (1880)MathSciNetCrossRefGoogle Scholar
- 7.Crauder, B., Katz, S.: Cremona transformations with smooth irreducible fundamental locus. Am. J. Math. 111, 289–309 (1989)MathSciNetCrossRefGoogle Scholar
- 8.Feĭgin, B.L., Odesskiĭ, A.V.: Sklyanin’s elliptic algebras and moduli of vector bundles on elliptic curves. RIMS Kyoto University preprint (1998)Google Scholar
- 9.Feĭgin, B.L., Odesskiĭ, A.V.: Vector bundles on an elliptic curve and Sklyanin algebras (Russian) 268(2), 285–287 (1988) (prepr. BITP, Kiev)Google Scholar
- 10.Feĭgin, B.L., Odesskiĭ, A.V.: Vector bundles on an elliptic curve and Sklyanin algebras. Topics in quantum groups and finite-type invariants. Am. Math. Soc. Transl. Ser. Am. Math. Soc. 185(2), 65–84 (1998) (Providence, RI)Google Scholar
- 11.Fisher, T.: Genus one curves defined by pfaffians 185(2), 65–84 (2006)Google Scholar
- 12.Fisher, T.: Invariant theory for the elliptic normal quintic I. Twist of \(X(5)\). Math. Ann. 356(2), 589–616 (2013)Google Scholar
- 13.Fisher, T.: The invariants of a genus 1 curve. Proc. Lond. Math. Soc. 97(3), 753–782 (2008)MathSciNetCrossRefGoogle Scholar
- 14.Fisher, T.: Pfaffian presentation of elliptic normal curves. Trans. Am. Math. Soc. 362(5), 2525–2540 (2010)MathSciNetCrossRefGoogle Scholar
- 15.Hulek, K.: Projective geometry of elliptic curves. SMF, Astérisque, vol.137 (1986). https://books.google.ru/books?id=BgioAAAAIAAJ
- 16.Hulek, K., Katz, S., Schreyer, F.-O.: Cremona transformations and syzygies. Math. Z. 209, 419–443 (1992)MathSciNetCrossRefGoogle Scholar
- 17.Klein, F.: Vorlesungen über das Ikosaeder und die Auflösungen der Gleichungen von fünftem Grade. Kommentiert und herausgegeben von P. Slodowy, Birkhäuser (1992)Google Scholar
- 18.Moore, R.: Heisenberg-invariant quintic 3-folds and sections of the Horrocks-Mumford bundle. Research Report No. 33-1985, Department of Mathematics, University of CanberraGoogle Scholar
- 19.Nambu, Yo.: Generalized Hamiltonian dynamics. Phys. Rev. D 7(3), 2405–2412 (1973)MathSciNetCrossRefGoogle Scholar
- 20.Odesskiĭ, A.V., Feĭgin, B.L.: Sklyanin’s elliptic algebras. (Russian) Funktsional. Anal. i Prilozhen. 23(3), 45–54 (1989). (Translation in Funct. Anal. Appl.23(3), 207–214, 1989)Google Scholar
- 21.Odesskiĭ, A.V., Rubtsov, V.N.: Integrable systems associated with elliptic algebras. Quantum groups, 81–105. (IRMA Lect. Math. Theor. Phys., 12, Eur. Math. Soc. Zurich 2008)Google Scholar
- 22.Odesskiĭ, A.V., Rubtsov, V.N.: Polynomial Poisson algebras with a regular structure of symplectic leaves. (Russian) Teoret. Mat. Fiz. 133(1), 3–23 (2002)Google Scholar
- 23.Odesskiĭ, A.V.: Rational degeneration of elliptic quadratic algebras. Infinite analysis, Part A, B, Kyoto, pp. 773–779 (1991). (Adv. Ser. Math. Phys. 16, World Sci. Publ., River Edge, NJ, 1992)Google Scholar
- 24.Odesskii, A.V.: Elliptic algebras. Russ. Math. Surv. 57(6), 1127–1162 (2002)MathSciNetCrossRefGoogle Scholar
- 25.Odesskii, A.V.: Bihamiltonian elliptic structures. Mosc. Math. J. 982(4), 941–946 (2004)MathSciNetzbMATHGoogle Scholar
- 26.Ortenzi G., Rubtsov, V., Tagne Pelap, S.R.: On the Heisenberg invariance and the elliptic Poisson tensors. Lett. Math. Phys. 96(1–3), 263–284 (2011)MathSciNetCrossRefGoogle Scholar
- 27.Ortenzi, G., Rubtsov, V., Tagne Pelap, S.R.: Integer solutions of integral inequalities and \(H\)-invariant Jacobian Poisson structures. Adv. Math. Phys. 2011, 252186 (2011)MathSciNetCrossRefGoogle Scholar
- 28.Polishchuk, A.: Algebraic geometry of Poisson brackets. J. Math. Sci. 84, 1413–1444 (1997)MathSciNetCrossRefGoogle Scholar
- 29.Polishchuk, A.: Poisson structures and birational morphisms associated with bundles on elliptic curves. Int. Math. Res. Notes 13, 683–703 (1998)MathSciNetCrossRefGoogle Scholar
- 30.Pym, B.: Constructions and classifications of projective Poisson varieties. arXiv:1701.08852
- 31.Semple, J.G., Roth, L.: Projective algebraic geometry. Oxford University Press (1986)Google Scholar
- 32.Semple, J.G.: Cremona transformations of space of four dimensions by means of quadrics and the reverse transformations. Phil. Trans. R. Soc. Lond. Ser. A. 228, 331–376 (1929)CrossRefGoogle Scholar
- 33.Sklyanin, E.K.: Some algebraic structures connected with the Yang-Baxter equation. (Russian) Funktsional. Anal. i Prilozhen. 16(4), 27–34 (1982)Google Scholar
- 34.Sklyanin, E.K.: Some algebraic structures connected with the Yang-Baxter equation. Representations of a quantum algebra. (Russian) Funktsional. Anal. i Prilozhen. 17(4), 34–48 (1983)Google Scholar
- 35.Smith, S.P., Stafford, J.T.: Regularity of the four-dimensional Sklyanin algebra. Compositio Math. 83(3), 259–289 (1992)MathSciNetzbMATHGoogle Scholar
- 36.Tagne Pelap, S.R.: Poisson (co)homology of polynomial Poisson algebras in dimension four: Sklyanin’s case. J. Algebra 322(4), 1151–1169 (2009)MathSciNetCrossRefGoogle Scholar
- 37.Tagne Pelap, S.R.: On the Hochschild homology of elliptic Sklyanin algebras. Lett. Math. Phys. 87(4), 267–281 (2009)MathSciNetCrossRefGoogle Scholar
- 38.Takhtajan, Leon: On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160(2), 295–315 (1994)MathSciNetCrossRefGoogle Scholar
- 39.Tate, J., Van den Bergh, M.: Homological properties of Sklyanin algebras. Invent. Math. 124(1–3), 619–647 (1996)MathSciNetCrossRefGoogle Scholar
- 40.Tu, L.W.: Semistable bundles over an elliptic curve. Adv. Math. 98(1), 1–26 (1993)MathSciNetCrossRefGoogle Scholar
- 41.Hua, Z., Polishchuk, A.: Shifted Poisson structures and moduli spaces of complexes. arXiv: math:1706.09965