The Efficiency Reaches a Plateau in Inverted Schottky Quantum Dot Solar Cells

  • Van Tuan Mai
  • Ngoc Huyen Duong
  • Xuan-Dung MaiEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 63)


Schottky lead sulfide (PbS) quantum dot (QD) solar cells (SCs) have the advantage of simple device fabrication while pn heterojunction SCs benefit from efficient carrier extraction induced by a front depletion region. Herein, we used low-work function transparent conducting oxide (L-TCO) to create a front contact with p-type PbS QD layer. The configuration, denoted as inverted Schottky, combines the mentioned advantages of Schottky and pn structures. A series of inverted Schottky cells having a structure of L-TCO/p-PbS QDs/MoOx/Au-Ag and normal Schottky cells with a structure of ITO/p-PbS QD/Li-Al were fabricated for comparison. Current - voltage measurements showed that as the thickness of p-PbS QD layer increased the power conversion efficiency (PCE) of normal cells maximized at 160 nm while PCE of inverted cells reached a plateau. The observed plateau in inverted Schottky cells can reduce the technical difficulty in maintaining the thickness of PbS QD layer.


Inverted Schottky Solar cells Quantum dots 



This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.99-2016.32


  1. 1.
    Luther, J.M., Law, M., Beard, M.C., Song, Q., Reese, M.O., Ellingson, R.J., Nozik, A.J.: Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008)CrossRefGoogle Scholar
  2. 2.
    Pradhan, S., Stavrinadis, A., Gupta, S., Christodoulou, S., Konstantatos, G.: Breaking the open-circuit voltage deficit floor in pbs quantum dot solar cells through synergistic ligand and architecture engineering. ACS Energy Lett. 2(6), 1444–1449 (2017)CrossRefGoogle Scholar
  3. 3.
    Mai, X., An, J., Song, H., Jang, J.: Inverted schottky quantum dot solar cells with enhanced carrier extraction and air-stability. J. Mater. Chem. A 2, 20799–20805 (2014)CrossRefGoogle Scholar
  4. 4.
    Barkhouse, D.A.R., Kramer, I.J., Wang, X., Sargent, E.H.: Dead zones in colloidal quantum dot photovoltaics: evidence and implications. Opt. Express 18, 451–457 (2010)CrossRefGoogle Scholar
  5. 5.
    Kemp, K.W., Wong, C.T.O., Hoogland, S.H., Sargent, E.H.: Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. Appl. Phys. Lett. 103, 211101 (2013)CrossRefGoogle Scholar
  6. 6.
    Ning, Z., Voznyy, O., Pan, J., Hoogland, S., Adinolfi, V., Xu, J., Li, M., Kirmani, A.R., Sun, J.P., Minor, J., Kemp, K.W., Dong, H., Rollny, L., Labelle, A., Carey, G., Sutherland, B., Hill, I., Amassian, A., Liu, H., Tang, J., Bakr, O.M., Sargent, E.H.: Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13, 822–828 (2014)CrossRefGoogle Scholar
  7. 7.
    Jo, J.W., Kim, Y., Choi, J., de Arquer, F.P.G., Walters, G., Sun, B., Ouellette, O., Kim, J., Proppe, A.H., Quintero-Bermudez, R., Fan, J., Xu, J., Tan, C.S., Voznyy, O., Sargent, E.H.: Enhanced open-circuit voltage in colloidal quantum dot photovoltaics via reactivity-controlled solution-phase ligand exchange. Adv. Mater. 29, 1–6 (2017)Google Scholar
  8. 8.
    Balazs, D.M., Rizkia, N., Fang, H.H., Dirin, D.N., Momand, J., Kooi, B.J., Kovalenko, M.V., Loi, M.A.: Colloidal Quantum Dot Inks For Single-Step-Fabricated Field-Effect Transistors: The Importance Of Postdeposition Ligand Removal. ACS Appl. Mater. Interfaces. 10, 5626–5632 (2018)CrossRefGoogle Scholar
  9. 9.
    Lu, K., Wang, Y., Liu, Z., Han, L., Shi, G., Fang, H., Chen, J., Ye, X., Chen, S., Yang, F., Shulga, A.G., Wu, T., Gu, M., Zhou, S., Fan, J., Loi, M.A., Ma, W.: High-efficiency PbS quantum-dot solar cells with greatly simplified fabrication processing via “Solvent-Curing”. Adv. Mater. 1707572, 1–9 (2018)Google Scholar
  10. 10.
    Woo, J.Y., Ko, J., Song, J.H., Kim, K., Choi, H., Kim, Y., Lee, D.C., Jeong, S., Song, H.: Ultra-Stable PbSe nanocrystal quantum dots via in-situ ultra-stable PbSe nanocrystal quantum dots via in-situ formation of atomically-thin halide Adlayers on PbSe (100)). J. Am. Chem. Soc. 136(25), 8883–8886 (2014)CrossRefGoogle Scholar
  11. 11.
    Tang, J., Kemp, K.W., Hoogland, S., Jeong, K.S., Liu, H., Levina, L., Furukawa, M., Wang, X., Debnath, R., Cha, D., Chou, K.W., Fischer, A., Amassian, A., Asbury, J.B., Sargent, E.H.: Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011)CrossRefGoogle Scholar
  12. 12.
    Brown, P.R., Kim, D., Lunt, R.R., Zhao, N., Bawendi, M.G., Grossman, J.C., Bulovi, V.: Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 1–17 (2014)CrossRefGoogle Scholar
  13. 13.
    Zhitomirsky, D., Voznyy, O., Levina, L., Hoogland, S., Kemp, K.W., Ip, A.H., Thon, S.M., Sargent, E.H.: Engineering colloidal quantum dot solids within and beyond the mobility invariant regime. Nat. Commun. 5, 1–7 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Van Tuan Mai
    • 1
    • 2
  • Ngoc Huyen Duong
    • 1
  • Xuan-Dung Mai
    • 3
    • 4
  1. 1.School of Engineering PhysicsHUSTHa NoiVietnam
  2. 2.Department of Natural SciencesElectric Power UniversityHanoiVietnam
  3. 3.Department of ChemistryHanoi Pedagogical University 2Vinh PhucVietnam
  4. 4.Institute of Research and Development, Duy Tan UniversityDa NangVietnam

Personalised recommendations