Advertisement

A Multi Stage Study of Thermoelectric Device Based on Semi-conductor Materials

  • Younes Chiba
  • Yacine Marif
  • Abdelali Boukaoud
  • Kehileche Brahim
  • Abdelhalim Tlemcani
  • Noureddine Henini
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)

Abstract

The present work dedicated to the study and analysis of a multi stage study of thermoelectric cooler based on hydrogen liquefier. For this purpose, the Seebeck and Peltier effect are used for simulate thermoelectric cooler. The energy equation has been used under the following conditions for prediction the efficiency of hydrogen liquefier. The properties of semi-conductor materials corresponding of cryogenics process were defined. A multi stage process has been proposed for decrease cold temperature of cold exchanger. The obtained results, including power and coefficient of performance are presented and discussed.

Keywords

Effect of seebeck Peltier effect Thermoelectric Refrigerator Cryogenics 

References

  1. Chiba, Y., Smaili, A., Mahmed, C., Balli, M., Sari, O.: Thermal investigations of an experimental active magnetic regenerative refrigerator operating near room temperature. Int. J. Refrig. 37, 36–42 (2014).  https://doi.org/10.1016/j.ijrefrig.2013.09.038CrossRefGoogle Scholar
  2. Chiba, Y.: Experimental and numerical study on the behavior of a multilayer for active magnetic refrigerator based on La-Fe-Co-Si. IEEE Trans. Magn. 53, 1–4 (2017).  https://doi.org/10.1109/TMAG.2017.2703100CrossRefGoogle Scholar
  3. Goupil, C., Seifert, W., Zabrocki, K., Muller, E., Snyder, G.J.: Thermodynamics of thermoelectric phenomena and applications. Entropy 13, 1481–1517 (2011).  https://doi.org/10.3390/e13081481CrossRefzbMATHGoogle Scholar
  4. Semenyuk, V.: A comparison of performance characteristics of multistage thermoelectric coolers based on different ceramic substrates. J. Electron. Mater. 43, 1539–1547 (2014).  https://doi.org/10.1007/s11664-013-2777-7CrossRefGoogle Scholar
  5. Pooja, I.M.: Design, modeling and simulation of a thermoelectric cooling system (tec). Master’s thesis, Western Michigan University (2016)Google Scholar
  6. Li, L., Chen, Z., Zhou, M., Huang, R.: Developments in semiconductor thermoelectric materials. Front. Energy 5, 125–136 (2011).  https://doi.org/10.1007/s11708-011-0150-1CrossRefGoogle Scholar
  7. Meng, F., Chen, L., Sun, F.: Performance prediction and irreversibility analysis of a thermoelectric refrigerator with finned heat exchanger. Acta Phys. Pol. A 120, 397–406 (2011)CrossRefGoogle Scholar
  8. Badillo-Ruiz, C.A., Olivares-Robles, M.A., Ruiz-Ortega, P.E.: Performance of segmented thermoelectric cooler micro-elements with different geometric shapes and temperature-dependent properties. Entropy 118, 1–17 (2018).  https://doi.org/10.3390/e20020118CrossRefGoogle Scholar
  9. Waldrop, S., Morellim, D.: Low-temperature thermoelectric properties of PtSb2_xTex for cryogenic peltier cooling applications. J. Electron. Mater. (2014).  https://doi.org/10.1007/s11664-014-3480-zCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Younes Chiba
    • 1
  • Yacine Marif
    • 2
  • Abdelali Boukaoud
    • 3
  • Kehileche Brahim
    • 1
  • Abdelhalim Tlemcani
    • 1
  • Noureddine Henini
    • 1
  1. 1.Faculty of TechnologyUniversity of MedeaMedeaAlgeria
  2. 2.Faculté des Mathématiques et Sciences de la Matière, LENREZAUniversité de OuarglaOuarglaAlgeria
  3. 3.Faculty of SciencesUniversity of MedeaMedeaAlgeria

Personalised recommendations