Insight of Electronic and Thermoelectric Properties of CdSiAs2 Ternary Chalcopyrite from First Principles Calculations

  • Nacera Si ZianiEmail author
  • Hamida Bouhani-Benziane
  • Melouka Baira
  • Abdelkader Belfedal
  • Mohamed Sahnoun
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)


Electronic and thermoelectric properties of ternary chalcopyrite type CdSiAs2 were studied using the first principles density functional calculations performed in the full potential linear augmented plane wave (FP-LAPW) method as implemented in the WIEN2k code. The thermoelectric properties are calculated by solving the Boltzmann transport equation within the constant relaxation time approximation. The calculated band gap using the Tran-Blaha modified Becke- Johnson potential (TB-mBJ) of CdSiAs2 compound is in good agreement with the available experimental data. Thermoelectric properties like thermopower, electrical conductivity scaled by relaxation time and electronic thermal conductivity scaled by relaxation time are calculated as a function of temperature.


Electronic properties Thermoelectric properties FP-LAPW method TB-MBJ 


  1. 1.
    Yu, L., Zunger, A.: Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108, 068701 (2012)CrossRefGoogle Scholar
  2. 2.
    Xiao, H., et al.: Accurate band gaps for semiconductors from density functional theory. J. Phys. Chem. Lett. 2, 212–217 (2011)CrossRefGoogle Scholar
  3. 3.
    Shay, J.L., Wernick, J.H.: Ternary Chalcopyrite Semiconductors Growth, Electronic Properties and Applications. Pergamon Press, Oxford (1975)Google Scholar
  4. 4.
    Kumar, V., Tripathy, S.K.: First-principle calculations of the electronic, optical and elastic properties of ZnSiP2 semiconductor. J. Alloys Compd. 582, 101–107 (2014)CrossRefGoogle Scholar
  5. 5.
    Turowski, M., Margaritondo, G., Kelly, M.K., Tomlinson, R.D.: Photoemission studies of CuInSe 2 and CuGaSe 2 and of their interfaces with Si and Ge. Phys. Rev. B 31, 1022–1027 (1985)CrossRefGoogle Scholar
  6. 6.
    Medvedkin, G.A., Voevodin, V.G.: Magnetic and optical phenomena in nonlinear optical crystals ZnGeP2 and CdGeP2. J. Opt. Soc. Am. B 22, 1884–1898 (2005)CrossRefGoogle Scholar
  7. 7.
    Das, S.: Pump tuned wide tunable noncritically phase-matched ZnGeP2 narrow line width optical parametric oscillator. Infrared Phys. Technol. 69, 13 (2015)CrossRefGoogle Scholar
  8. 8.
    Xu, Y., Ao, Z.M., Zou, D.F., Nie, G.Z., Sheng, W., Yuan, D.W.: Strain effects on the electronic structure of ZnSnP2 via modified Becke–Johnson exchange potential. Phys. Lett. A 379, 427–430 (2015)CrossRefGoogle Scholar
  9. 9.
    Yao, B., et al.: High-power Cr 2+: ZnS saturable absorber passively Q-switched Ho: YAG ceramic laser and its application to pumping of a mid-IR OPO. Opt. Lett. 40, 348–351 (2015)CrossRefGoogle Scholar
  10. 10.
    Zhang, Z., et al.: Femtosecond-laser pumped CdSiP 2 optical parametric oscillator producing 100 MHz pulses centered at 6.2 μm. Opt Lett 38, 5110 (2013)CrossRefGoogle Scholar
  11. 11.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k. In: Schwarz, K. (ed.) An Augmented Plane Wave þ Local Orbitals Program for Calculating Crystal Properties. Techn Universitat Wien, Austria (2001)Google Scholar
  12. 12.
    Blaha, P., Schwarz, K., Sorantin, P.I., Tricky, S.B.: Thermoelectric properties of binary LnN (Ln = La and Lu): first principles study. Comput. Phys. Commun. 59, 399 (1990)CrossRefGoogle Scholar
  13. 13.
    Becke, A.D., Johnson, E.R.: A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006)CrossRefGoogle Scholar
  14. 14.
    Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)CrossRefGoogle Scholar
  15. 15.
    Zunger, A.: Order‐disorder transformation in ternary tetrahedral semiconductors. Appl. Phys. Lett. 50(3), 164 (1987)CrossRefGoogle Scholar
  16. 16.
    Jaffe, J.E., Zunget, A.: Second-harmonic generation and birefringence of some ternary pnictide semiconductors. Phys. Rev. B 29(4), 1882 (1984)CrossRefGoogle Scholar
  17. 17.
    Rashkeev, S.N., Limpijumnong, S., Lambrecht, W.R.L.: Second-harmonic generation and birefringence of some ternary pnictide semiconductors. Phys. Rev. B 59(4), 2737 (1999)CrossRefGoogle Scholar
  18. 18.
    Shi et al., L.: J. Alloys Compd. 611, 210–218 (2014)Google Scholar
  19. 19.
    Shaposhnikov, V.L., Krivosheeva, A.V., Borisenko, V.E.: Ab initio modeling of the structural, electronic, and optical properties of A II B IV C 2 V semiconductors. Phys. Rev. B 85, 205201 (2012)CrossRefGoogle Scholar
  20. 20.
    Vaipolin, A.A.: Fiz. Tverd. Tela 15 (1973) 1430 [Sov. Phys. Solid State 15 (1973) 965] Google Scholar
  21. 21.
    Reshak, A.H., Khenata, R., Kityk, I.V., Plucinski, K.J., Auluck, S.: X-ray photoelectron spectrum and electronic properties of a noncentrosymmetric chalcopyrite compound HgGa2S4: LDA, GGA, and EV-GGA. J. Phys. Chem. B 113, 5803 (2009)CrossRefGoogle Scholar
  22. 22.
    Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)CrossRefGoogle Scholar
  23. 23.
    Jaffe, J.E., Zunger, A.: Theory of the band gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B 29, 1882 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nacera Si Ziani
    • 1
    Email author
  • Hamida Bouhani-Benziane
    • 1
  • Melouka Baira
    • 1
  • Abdelkader Belfedal
    • 2
  • Mohamed Sahnoun
    • 1
  1. 1.Laboratoire de Physique Quantique de la Matière et Modélisation Mathematique (LPQ3M), Faculté des Sciences ExactesUniversité Mustapha StambouliMascaraAlgeria
  2. 2.Laboratoire de Chimie-Physique de Macromolécule et Interface Biologique, Faculté des Sciences et de la vieUniversité Mustapha StambouliMascaraAlgeria

Personalised recommendations