A Comparison Between Parallel Plates and Packed Bed in Electrocaloric Refrigerator Based on Hydrogen Liquefier

  • Kehileche Brahim
  • Chiba Younes
  • Henini Noureddine
  • Tlemçani Abdelhalim
  • Mimene Bakhti
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)


Electrocaloric refrigerator based on Hydrogen liquefier is a new environmentally friendly cooling technology with a potential for high energy efficiency. The technology is based on the electrocaloric effect; the electrocaloric effect is a phenomenon in which a material shows a reversible temperature change under an applied electric field.

In this work, we studied the effect of parameters (thermal performance) in elctrocaloric refrigerator based on hydrogen liquefier: (1) a packed bed and (2) a parallel plates. The temperature distribution (solid - fluid) is determined by the standard heat transfer equation implemented in COMSOL multiphysics, and they indicate under which operating conditions packed bed configuration is to be preferred to parallel plates and vice versa.


Hydrogen liquefier Electrocaloric effect COMSOL multiphysics 


  1. 1.
    Chiba, Y., Smaili, A., Mahmed, C., Balli, M., Sari, O.: Thermal investigations of an experimental active magnetic regenerative refrigerator operating near room temperature. Int. J. Refrig. 37(1), 36–42 (2014). Scholar
  2. 2.
    Aprea, C., Greco, A.: A comparison between electrocaloric and magnetocaloric materials for solid state refrigeration. Int. J. Heat Technol. 35(1), 225–234 (2017). Scholar
  3. 3.
    Pirc, R., Roi, B., Kutnjak, Z., Blinc, R., Li, X., Zhang, Q.: Electrocaloric effect and dipolar entropy change in ferroelectric polymers. Ferroelectrics 426(1), 38–44 (2012). Scholar
  4. 4.
    Ozbolt, M., Kitanovski, A., Tusek, J., Poredo, A.: Electrocaloric refrigeration: thermodynamics, state of the art and future perspectives. Int. J. Refrig. 40, 174–188 (2014). Scholar
  5. 5.
    Correia, T., Zhang, Q.: Electrocaloric Materials New Generation of Coolers. Springer, Berlin (2014)CrossRefGoogle Scholar
  6. 6.
    Scot, J.F.: Electrocaloric Materials. Cambridge University, Cavendish Laboratory (2011)Google Scholar
  7. 7.
    Aprea, C., Greco, A., Maiorino, A., Masselli, C.: Electrocaloric refrigeration: an innovative, emerging, eco-friendly refrigeration technique. J. Phys. 796(1), 012019 (2017). Scholar
  8. 8.
    Kamiya, K., Takahashi, H., Numazawa, T.: Hydrogen liquefaction by magnetic refrigeration. In: International. Cryocooler Conference, Inc., Boulder, CO (2007)Google Scholar
  9. 9.
    Chelton, D.B., Dean, J.W., Strobridge, T.R.: Helium Refrigeration and Liquefaction Using a Liquid Hydrogen Refrigerator for Precooling. Office of technical services, USA (1960)Google Scholar
  10. 10.
    Kirstein, K., Henri, J.: Numerical modeling and analysis of the active magnetic regenerator. Technical University of Denmark (2010)Google Scholar
  11. 11.
    Frank, T., Nini, P., Anders, S.: Numerical modeling and analysis of a room temperature magnetic refrigeration system. Technical University of Denmark (2008)Google Scholar
  12. 12.
    Lionte, S., Vasile, C., Siroux, M.: Approche multiphysique et multi-échelle d’un régénérateur magnéto thermique actif. Institut National des Sciences Appliques INSA (2015).
  13. 13.
    Chiba, Y., Smaili, A., Sari, O.: Enhancements of thermal performances of an active magnetic refrigeration device based on nanofluids. Mechanika 23(1), 31–38 (2017). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kehileche Brahim
    • 1
  • Chiba Younes
    • 2
  • Henini Noureddine
    • 1
  • Tlemçani Abdelhalim
    • 1
  • Mimene Bakhti
    • 1
  1. 1.Faculty of Technology, Department of Electrical EngineeringUniversity of MedeaMedeaAlgeria
  2. 2.Faculty of Technology, Department of Mechanical EngineeringUniversity of MedeaMedeaAlgeria

Personalised recommendations