Advertisement

Speed Control for Multi-phase Induction Machine Fed by Multi-level Converters Using New Neuro-Fuzzy

  • E. Zaidi
  • K. Marouani
  • H. Bouadi
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)

Abstract

This paper proposes a novel neuro-fuzzy control (NFC) for multi-phase induction machine (MPIM) fed by two multi-level converters (MLC) using venturing modulation algorithm. A four-layer artificial neural network (ANN) structure is utilized to train the parameters of the fuzzy logic controller (FLC) based on the minimization of the square of the error. In the proposed method indirect field oriented control (IFOC) is applied to the MPIM. The results are compared with the results obtained from a proportional–integral (PI) controller. Simulation results obtained are very satisfactory and showed that neuro-fuzzy control performance is enhanced using two multi-level converters (MLC) with introduces load disturbances.

Keywords

Multi-phase induction machine (MPIM) Multi-level converters (MLC) Neuro-fuzzy controller (NFC) 

References

  1. 1.
    Singh, G.K., Nam, K., Lim, S.K.: A simple indirect field-oriented control scheme for multiphase induction machine. IEEE Trans. Ind. Electron. 52(4), 1117–1184 (2005)CrossRefGoogle Scholar
  2. 2.
    Benyoussef, E., Meroufel, A., Barkat, S.: Neural network and fuzzy logic direct torque control of sensorless double star synchronous machine. Rev. Roum. Sci. Techn.–Électrotechn. Et Énerg 61(3), 239–243 (2016)Google Scholar
  3. 3.
    Levi, E.: Recent developments in high performance variable-speed multi-phase induction motor drives.In: Sixth international symposium Nikola tesla, Belgrade, SASA, Serbia, pp. 18–20 (2006)Google Scholar
  4. 4.
    Yi, S.Y., Chung, M.J.: Robustness of fuzzy logic control for an uncertain dynamic system. IEEE Trans. Fuzzy Syst. 6, 216–224 (1998)CrossRefGoogle Scholar
  5. 5.
    Krishnan, R., Doran, F.: Study of parameters sensitivity in high performance inverter fed induction motor drive systems. IEEE Trans. Ind. 23, 623–635 (1987)CrossRefGoogle Scholar
  6. 6.
    Lekhchine, S., Bahib, T., Soufi, Y.: Indirect rotor field oriented control based on fuzzy logic controlled double star induction machine. Electr. Power Energy Syst. 57, 206–211 (2014)CrossRefGoogle Scholar
  7. 7.
    Sadouni, R., Meroufel, A.: Indirect rotor field-oriented control (IRFOC) of a dual star induction machine (DSIM) using a fuzzy controller. Acta Polytech. Hung. 9(4), 177–192 (2012)Google Scholar
  8. 8.
    Merabet, E., Amimeur, H., Hamoudi, F., Abdessemed, R.: Self-tuning fuzzy logic controller for a dual star induction machine. J. Electr. Eng. Technol. 6(1), 133–138 (2011)CrossRefGoogle Scholar
  9. 9.
    Michael, U., Wishart, T., Harley, R.G.: Identification and control of induction machines usingartificial neural networks. IEEE Trans. Ind. Appl. 31(3), 612–619 (1995)CrossRefGoogle Scholar
  10. 10.
    Lekhchine, S., Bahi, T., Soufi, Y., Merabet, H.: Neural fuzzy speed control for six phase induction machines. In: International Conference of Control, Engineering & Information Technology (CEIT’13) Algeria, vol. 3, pp. 123–127 (2013)Google Scholar
  11. 11.
    Uddin, M.N., Abido, M.A., Rahman, M.A.: Development and implementation of a hybrid intelligent controller for interior permanent magnet synchronous motor drive. IEEE Trans. Ind. Appl. 40(1), 68–76 (2004)CrossRefGoogle Scholar
  12. 12.
    Jang, J.-S.R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23(3), 665–684 (1993)CrossRefGoogle Scholar
  13. 13.
    Iffouzar, K., Benkhoris, M.F., Ghedamsi, K., Aouzellag, D.: Behavior analysis of a dual stars induction motor supplied by PWM multi-level inverters. Rev. Roum. Sci. Techn.–Électrotechn. Et Énerg 61(2), 137–141 (2016)Google Scholar
  14. 14.
    Talaeizadeh, V., Kianinezhad, R., Seyfossadat, S.G., Shayanfar, H.A.: Direct torque control of six-phase induction motors using three-phasematrix converter. Energy Convers. Manag. 51, 2482–2491 (2010)CrossRefGoogle Scholar
  15. 15.
    Marouani, K., Nounou, K., Benbouzid, M., Tabbache, B.: Power factor correction of an electrical drive system based on multiphase machines. In: IEEE ICGE 2014, Mar 2014, Sfax, Tunisia, pp. 152–157 (2014)Google Scholar
  16. 16.
    Marouani, K., Baghli, L., Hadiouche, D., Kheloui, A., Rezzoug, A., Mai, A.: New PWM strategy based on 24-sector vector space decomposition for a six-phase VSI-fed dual stator induction motor. IEEE Trans. Ind. Electron. 55(5), 1910–1920 (2008)CrossRefGoogle Scholar
  17. 17.
    Corzine, K.A., Baker, J.R.: Reduced parts-count multi-level retifiers. IEEE Trans. Ind. Electron. 49(3), 766–774 (2002)CrossRefGoogle Scholar
  18. 18.
    Peng, F.Z.: A generalized multilevel inverter topology with self voltage balancing. IEEE Trans. Ind. Appl. 37, 611–618 (2004)CrossRefGoogle Scholar
  19. 19.
    Elmas, C., Hasan, O.U., Sayan, H.: A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor drives. Expert Syst. Appl. 34, 657–664 (2008)CrossRefGoogle Scholar
  20. 20.
    Uddin, M.N., Wen, H.: Development of a self-tuned neuro-fuzzy controller for induction motor drives. IEEE Trans. Ind. Appl. 43(4), 1108–1116 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ecole Militaire Polytechnique, LCM-UER-ELTBordj El-BahriAlgeria

Personalised recommendations