Advertisement

Fractional Order PI Controller Design for Control of Wind Energy Conversion System Using Bat Algorithm

  • Maroufi Oussama
  • Abdelghani Choucha
  • Lakhdar Chaib
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)

Abstract

This study presents intelligent control of the global wind energy conversion system (WECS), through a Permanent Magnet Synchronous Generator based variable speed Wind Turbine (PMSG-WT). The proposed control design is touched many parts in PMSG-WT, which are control of Maximum Power Point Tracking, Pitch Angle controller, and control of PMSG. The proposed controller is designed using Fractional PI controller. Where the controller parameters are successfully tuned by a new metaheuristic optimization Bat algorithm (BA). To highlight and compare the performances of this controller, it is employed under changes wind speed condition and compared with the conventional PI controller. Simulations results show clearly effectiveness of the proposed controller. Moreover, the PMSG-WT plant is effectively controlled at different operating conditions by the proposed scheme.

Keywords

Wind energy conversion system PMSG Fractional order PI controller Bat algorithm 

References

  1. 1.
    Hong, C.M., Chen, C.H.: Intelligent control of a grid-connected wind-photovoltaic hybrid power systems. Int. J. Electr. Power Energy Syst. 55, 554–561 (2014)CrossRefGoogle Scholar
  2. 2.
    Ounnas, D., Ramdani, M., Chenikher, S., Bouktir, T.: Optimal reference model based fuzzy tracking control for wind energy conversion system. Int. J. Renew. Energy Res. (IJRER) 6(3), 1129–1136 (2016)Google Scholar
  3. 3.
    Mansour, M., Mansouri, M.N., Mmimouni, M.F.: Study and control of a variable-speed wind-energy system connected to the grid. Int. J. Renew. Energy Res. 1(2), 96–104 (2011)Google Scholar
  4. 4.
    Meghni, B., Dib, D., Azar, A.T.: A second-order sliding mode and fuzzy logic control to optimal energy management in wind turbine with battery storage. Neural Comput. Appl. 28(6), 1417–1434 (2017)CrossRefGoogle Scholar
  5. 5.
    Kahla, S., Soufi, Y., Sedraoui, M., Bechouat, M.: Maximum power point tracking of wind energy conversion system using multi-objective grey wolf optimization of fuzzy-sliding mode controller. Int. J. Renew. Energy Res. (IJRER) 7(2), 926–936 (2017)Google Scholar
  6. 6.
    Bechouat, M., Soufi, Y., Sedraoui, M., Kahla, S.: Energy storage based on maximum power point tracking in photovoltaic systems: a comparison between GAs and PSO approaches. Int. J. Hydrog. Energy 40(39), 13737–13748 (2015)CrossRefGoogle Scholar
  7. 7.
    Smida, M.B., Sakly, A.: Pitch angle control for variable speed wind turbines. Renew. Energy Sustain. Dev. 1(1), 81–88 (2015)Google Scholar
  8. 8.
    Chaib, L., Choucha, A., Arif, S.: Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm. Ain Shams Eng. J. 8(2), 113–125 (2017)CrossRefGoogle Scholar
  9. 9.
    Delassi, A., Arif, S., Mokrani, L.: Load frequency control problem in interconnected power systems using robust fractional PIλD controller. Ain Shams Eng. J. 9, 77–78 (2015)CrossRefGoogle Scholar
  10. 10.
    Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010) (pp. 65–74). Springer, Berlin (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maroufi Oussama
    • 1
  • Abdelghani Choucha
    • 1
  • Lakhdar Chaib
    • 1
  1. 1.Laboratoire d’Analyse, de Commande des Systèmes d’Energie et Réseaux électriques (LACoSERE)Université Amar Telidji de LaghouatLaghouatAlgeria

Personalised recommendations