Advertisement

Nonlinear Sliding Mode Control of DFIG Based on Wind Turbines

  • Bahia Kelkoul
  • Abdelmadjid Boumediene
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)

Abstract

This paper presents the modeling and control of doubly fed induction generator (DFIG) based on wind turbine systems. In order to control the stator active and reactive powers of the DFIG, a control law is synthesized using two types of controllers: a linear PI controller and nonlinear Sliding Mode Controller (SMC). Their performances are compared in terms of power reference tracking and robustness against machine parameters variations. Simulation results using Matlab/Simulink have shown good performances of the wind energy converter system operate under typical wind variations and every propose control strategies.

Keywords

Modeling DFIG PI controller Sliding Mode Control (SMC) 

References

  1. 1.
    Zou, Y., Elbuluk, M., Sozer, Y.: Stability analysis of maximum power pointtracking (MPPT) method in wind power systems. IEEE Trans. Ind. Appl. 49(3), 1129–1136 (2013)CrossRefGoogle Scholar
  2. 2.
    Bo, Y., et al.: Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine. Int. J. Electr. Power Energy Syst. 74, 429–436 (2016)CrossRefGoogle Scholar
  3. 3.
    Carrasco, J.M., et al.: Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Trans. Ind. Electron. 53(4), 1002–1016 (2006)CrossRefGoogle Scholar
  4. 4.
    Belgacem, K., Mezouar, A., Massoum, A.: Sliding mode control of a doubly-fed induction generator for wind energy conversion. Int. J. Energy Eng. 3(1), 30–36 (2013).  https://doi.org/10.5923/j.ijee.20130301.05CrossRefGoogle Scholar
  5. 5.
    Zadehbagheri, M., Ildarabadi, R., Nejad, M.B.: Sliding mode control of a doubly- fed induction generator (DFIG) for wind energy conversion system. Int. J. Sci. Eng. Res. 4(11) (2013)Google Scholar
  6. 6.
    Asghar, M.: Performance comparison of wind turbine based doubly fed induction generator system using fault tolerant fractional and integer order controllers. Renew. Energy 116, 244–264 (2018)CrossRefGoogle Scholar
  7. 7.
    Patton, R., Frank, P., Clark, R.: Issues of Fault Diagnosis for Dynamic Systems. Springer, Berlin (2000)CrossRefGoogle Scholar
  8. 8.
    Djoudi, A., Bachac, S., Iman-Eini, H., Rekiouae, T.: Sliding mode control of DFIG powers in the case of unknown flux and rotor currents with reduced witching frequency. Electr. Power Energy Syst. 96, 347–356 (2018)CrossRefGoogle Scholar
  9. 9.
    Bekakra, Y., Attous, D.B.: Active and reactive power control of a DFIG with MPPT for variable speed wind energy conversion using sliding mode control. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng. 5(12) (2011)Google Scholar
  10. 10.
    Munteanu, I., Bratcu, A.I., Cutululis, N.-A., Ceanga, E.: Optimal Control of Wind Energy Systems: Towards a Global Approach, 1st edn. Springer, Berlin (2008)Google Scholar
  11. 11.
    Liu, X., Kong, X.: Nonlinear model predictive control for DFIG-basedwind power generation. IEEE Trans. Autom. Sci. Eng. 11(4), 1046–1055 (2014)CrossRefGoogle Scholar
  12. 12.
    Moradi, H., Vossoughi, G.: Robust control of the variable speed wind turbines in the presence of uncertainties: a comparison between H∞ and PID controllers. Energy 90, 1508–1521 (2015)CrossRefGoogle Scholar
  13. 13.
    Kiruthiga, B.: Implementation of first order sliding mode control of active and reactive power for DFIG based wind turbine. Int. J. Inf. Futur. Res. 2(8), 2487–2497 (2015)Google Scholar
  14. 14.
    Pinghua, X., Dan, S.: Backstepping-based DPC strategy of a wind turbine-driven DFIG under normal and harmonic grid voltage. IEEE Trans. Power Electron. 31(6), 4216–4225 (2016)CrossRefGoogle Scholar
  15. 15.
    Dan, S., Xiaohe, W.: Low-complexity model predictive direct power control forDFIG under both balanced and unbalanced grid conditions. IEEE Trans. Industr. Electron. 63(8), 5186–5196 (2016)Google Scholar
  16. 16.
    Elghali, S.E.B., et al.: High-order sliding mode control of DFIG-based marine currentturbine. In: 34th Annual Conference of Industrial Electronics, IECON 2008, IEEE (2008)Google Scholar
  17. 17.
    Chen, S.Z., et al.: Integral variable structure direct torque control of doubly fed induction generator. IET Renew. Power Gener. 5(1), 18–25 (2011)CrossRefGoogle Scholar
  18. 18.
    MorfinOnofre, A., et al.: Torque controller of a doubly-fed induction generator im-pelled by a DC motor for wind system applications. IET Renew. Power Gener. 8(5), 484–497 (2014)CrossRefGoogle Scholar
  19. 19.
    Yipeng, S., Heng, N.: Modularized control strategy and performance analysis of DFIG system under unbalanced and harmonic grid voltage. IEEE Trans. Power Electron. 30(9), 4831–4842 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LAT, Laboratoire D’Automatique de TlemcenUniversité de TlemcenTlemcenAlgeria

Personalised recommendations