Advertisement

Application of Improved Artificial Neural Network Algorithm in Hydrocarbons’ Reservoir Evaluation

  • M. Z. DoghmaneEmail author
  • B. Belahcene
  • M. Kidouche
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 62)

Abstract

The aim of this work is to develop an artificial neural network software tool in Matlab which allows the well logging interpreter to evaluate hydrocarbons reservoirs by classification of its existing facies into six types (clay, anhydrite, dolomite, limestone, sandstone and salt), the advantage of such classification is that it is automatic and gives more precision in comparison to manual recognition using industrial software. The developed algorithm is applied to eleven wells data of the Algerian Sahara where necessary curves (Gama Ray, density curve Rhob, Neutron porosity curve Nphi, Sonic curve dt, photoelectric factor curve PE) for realization of this technique are available. A graphical user interface is developed in order to simplify the use of the algorithm for interpreters.

Keywords

Artificial neural networks Lithofacies classification Industrial software Algerian Sahara Graphical user interface 

References

  1. 1.
    Schlumberger: Log Interpretation Charts (2013)Google Scholar
  2. 2.
    Gassaway et al.: The Graphical Cross-Plotting Technique (1989)Google Scholar
  3. 3.
    Mavko, G., Mukerji, T., Dvorkin, J.: The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  4. 4.
    Serra, O.: Diagraphies Différés base de l’interprétation, Tome2. Etudes et productions Schlumberger, Montrouge (1985)Google Scholar
  5. 5.
    Halliberton: Logging and Perforating Products and services (2003)Google Scholar
  6. 6.
    Schlumberger: Log Interpretation Charts (2000)Google Scholar
  7. 7.
    Dreyfus, G. et al.: Réseaux de neurones, Méthodologie et applications, Editions Eyrolles (2004)Google Scholar
  8. 8.
    Rosenberg, C.R., Sejnowski, T.J.: The spacing effect on NETtalk, a massively-parallel network. In: Proceedings of the Eighth Annual Conference of the Cognitive Science Society, pp. 72–89. Lawrence Erlbaum Associates, Hillsdale, New Jersey (1987)Google Scholar
  9. 9.
    Zarpanis, A., Renese, A.P.: Principles of Neural Model Identification Selection and Adequacy, Centre of Neural Networks, Departement of mathematics. King’s College, London (1999)Google Scholar
  10. 10.
    Sung, H., Lee, D.S.: Neuro-fuzzy recognition system for detecting wave patterns using wavelet coefficients. IEICE Trans. Inf. Syst. 84-D(8) (2001)Google Scholar
  11. 11.
    Renders, J.M.: Algorithmes génétiques et réseaux de neurones. Editions Hermés, Paris (1995)Google Scholar
  12. 12.
    Johnston, D.H.: Seismic attribute calibration using neural networks. Soc. Expl. GeophysGoogle Scholar
  13. 13.
    Platon, E. et al.: Pattern matching in facies analysis from well log data - a hybrid neural network-based application. In: AAPG Conference and Exhibition, Barcelona, Spain. September 21–24 (2003)Google Scholar
  14. 14.
    Fournier, F.: Analyse automatique de faciès diagraphiques et sismiques. Réunion technique Société pour l’Avancement de l’Interprétation des Diagraphies SAID-Union Française des Géologues UFG du 25 Juin (2002)Google Scholar
  15. 15.
    Mihoubi, A.: Classification lithologique des attributs sismiques par les réseaux de neurone artificiels, Ph.D. thesis, Faculté des Hydrocarbures et de la chimie FHC – UMBB (2008)Google Scholar
  16. 16.
    Hassoun, M.H.: Fundamentals of Artificial Neural Networks. MIT Press, Cambridge, London (1995)zbMATHGoogle Scholar
  17. 17.
    Masters, T.: Practical Neural Network Recipes in C++. Academic Press Professional Inc., San Diego (1993)zbMATHGoogle Scholar
  18. 18.
    Fu, L.: Neural Networks in Computer Intelligence. McGraw-Hill, New York (1995)Google Scholar
  19. 19.
    Tabach, E.E., Lancelot, L., Shahrour, I., Najjar, Y.: Use of artificial network simulation metamodelling to assess groundwater contamination in a road project. Math. Comput. Model. 45(7–8), 766–776 (2007)CrossRefGoogle Scholar
  20. 20.
    Kumar, S.: Neural Networks. McGraw-Hill, New York (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Reservoir Evaluation Department, Exploration and Production DivisionSonatrachHassi MessaoudAlgeria
  2. 2.Gassi Touil Division ProductionSonatrachHassi MessaoudAlgeria
  3. 3.Department of Automation, Faculty of Hydrocarbons and Chemistry (Ex-INH)University M’hamed Bougara, BoumerdesBoumerdesAlgeria

Personalised recommendations