Advertisement

Characterization of Glycated Lysine in Peptide–Sugar System

  • Dongliang Ruan
  • Hui Wang
  • Faliang Cheng
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

The model of lysine–reducing sugars had been studied by Maillard (Compt Rend Acad Sci 154:66–68, 1912 [1]) and many other researchers (Hodge in Adv Carbohydr Chem 10:169–205, 1955 [2]; Adrian and Frangne in Ann Nutr Alimentation 27(3):111–123, 1973 [3]; Tagami et al. in J Mass Spectrom 35(2):131–138, 2000 [4]).

References

  1. 1.
    Maillard LC (1912) Reaction of amino acids on sugars: formation of melanoidins by a systematic way. Compt Rend Acad Sci 154:66–68Google Scholar
  2. 2.
    Hodge JE (1955) The amadori rearrangement. Adv Carbohydr Chem 10:169–205PubMedGoogle Scholar
  3. 3.
    Adrian J, Frangne R (1973) Maillard reaction 8. Role of premelanoidins on nitrogen digestibility in-vivo and on proteolyse in-vitro. Ann Nutr Alimentation 27(3):111–123Google Scholar
  4. 4.
    Tagami U, Akashi S, Mizukoshi T et al (2000) Structural studies of the Maillard reaction products of a protein using ion trap mass spectrometry. J Mass Spectrom 35(2):131–138CrossRefGoogle Scholar
  5. 5.
    Friedman M (1996) Food browning and its prevention: an overview. J Agric Food Chem 44(3):631–653CrossRefGoogle Scholar
  6. 6.
    Vinale F, Monti SM, Panunzi B et al (1999) Convenient synthesis of lactuloselysine and its use for LC-MS analysis in milk-like model systems. J Agric Food Chem 47:4700–4706CrossRefGoogle Scholar
  7. 7.
    Sanz ML, Corzo-Martinez M, Rastall RA et al (2007) Characterization and in vitro digestibility of bovine beta-lactoglobulin glycated with galactooligosaccharides. J Agric Food Chem 55(19):7916–7925CrossRefGoogle Scholar
  8. 8.
    Mennella C, Visciano M, Napolitano A et al (2006) Glycation of lysine-containing dipeptides. J Pept Sci 12(4):291–296CrossRefGoogle Scholar
  9. 9.
    Jeric I, Versluis C, Horvat S et al (2002) Tracing glycoprotein structures: electron ionization tandem mass spectrometric analysis of sugar-peptide adducts. J Mass Spectrom 37(8):803–811CrossRefGoogle Scholar
  10. 10.
    Frolov A, Hoffmann P, Hoffmann R (2006) Fragmentation behavior of glycated peptides derived from d-glucose, d-fructose and d-ribose in tandem mass spectrometry. J Mass Spectrom 41(11):1459–1469CrossRefGoogle Scholar
  11. 11.
    Iberg N, Fluckiger R (1986) Nonenzymatic glycosylation (glycation) of proteins—the principal sites of invitro glycation of rnase A. Experientia 42(6):680Google Scholar
  12. 12.
    Venkatraman S, Chan CM (1986) A novel method for cross-linking polyetherketones. Abstr Pap Am Chem Soc 191:118-POLYGoogle Scholar
  13. 13.
    Nakanishi T, Iguchi K, Shimizu A (2003) Method for hemoglobin A(1c) measurement based on peptide analysis by electrospray ionization mass spectrometry with deuterium-labeled synthetic peptides as internal standards. Clin Chem 49(5):829–831CrossRefGoogle Scholar
  14. 14.
    Ahmed N, Thornalley PJ (2003) Quantitative screening of protein biomarkers of early glycation, advanced glycation, oxidation and nitrosation in cellular and extracellular proteins by tandem mass spectrometry multiple reaction monitoring. Biochem Soc Trans 31:1417–1422CrossRefGoogle Scholar
  15. 15.
    Castro-Perez J, Plumb R, Liang L et al (2005) A high-throughput liquid chromatography/tandem mass spectrometry method for screening glutathione conjugates using exact mass neutral loss acquisition. Rapid Commun Mass Spectrom 19(6):798–804CrossRefGoogle Scholar
  16. 16.
    Scholz K, Dekant W, Volkel W et al (2005) Rapid detection and identification of N-acetyl-L-cysteine thioethers using constant neutral loss and theoretical multiple reaction monitoring combined with enhanced product-ion scans on a linear ion trap mass spectrometer. J Am Soc Mass Spectrom 16(12):1976–1984CrossRefGoogle Scholar
  17. 17.
    Horvat S, Jakas A (2004) Peptide and amino acid glycation: new insights into the Maillard reaction. J Pept Sci 10(3):119–137CrossRefGoogle Scholar
  18. 18.
    Jakas A, Katic A, Bionda N et al (2008) Glycation of a lysine-containing tetrapeptide by d-glucose and d-fructose—influence of different reaction conditions on the formation of Amadori/Heyns products. Carbohyd Res 343(14):2475–2480CrossRefGoogle Scholar
  19. 19.
    Saraiva MA, Borges CM, Florencio MH (2006) Reactions of a modified lysine with aldehydic and diketonic dicarbonyl compounds: an electrospray mass spectrometry structure/activity study. J Mass Spectrom 41(2):216–228CrossRefGoogle Scholar
  20. 20.
    Finot PA, Mauron J (1969) Lysine blockade via maillards reaction. I. Synthesis of N-(1-desoxy-d-fructos-1-yl)-l-lysine and n-(1-desoxy-d-lactulos-1-yl)-l-lysine. Helv Chim Acta 52(6):1488–1495Google Scholar
  21. 21.
    Ruan ED, Wang H, Ruan Y et al (2013) Study of fragmentation behavior of amadori rearrangement products in lysine-containing peptide model by tandem mass spectrometry. Eur J Mass Spectrom 19(4):295–303CrossRefGoogle Scholar
  22. 22.
    Fogliano V, Monti SM, Visconti A et al (1998) Identification of a beta-lactoglobulin lactosylation site. Biochim Biophys Acta-Protein Struct Mol Enzymol 1388(2):295–304CrossRefGoogle Scholar
  23. 23.
    Gadgil HS, Bondarenko PV, Treuheit MJ et al (2007) Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method. Anal Chem 79(15):5991–5999CrossRefGoogle Scholar
  24. 24.
    Li C, Wang H, Zhang Y et al (2014) Characteristics of early maillard reaction products by electrospray ionization mass spectrometry. Asian J Chem 26(21):7452–7456Google Scholar
  25. 25.
    Zhang Y, Ruan ED, Wang H et al (2014) A fundamental study of amadori rearrangement products in reducing sugar-amino acid model system by electrospray ionization mass spectrometry and computation. Asian J Chem 26(10):2914–2944Google Scholar
  26. 26.
    Yeboah FK, Yaylayan VA (2001) Analysis of glycated proteins by mass spectrometric techniques: qualitative and quantitative aspects. Nahrung-Food 45(3):164–171CrossRefGoogle Scholar
  27. 27.
    Vinale F, Monti SM, Panunzi B et al (1999) Convenient synthesis of lactuloselysine and its use for LC-MS analysis in milk-like model systems. J Agric Food Chem 47(11):4700–4706CrossRefGoogle Scholar
  28. 28.
    Morgan F, Bouhallab S, Molle D et al (1998) Lactolation of beta-lactoglobulin monitored by electrospray ionisation mass spectrometry. Int Dairy J 8(2):95–98CrossRefGoogle Scholar
  29. 29.
    Monti SM, Ritieni A, Graziani G et al (1999) LC/MS analysis and antioxidative efficiency of Maillard reaction products from a lactose-lysine model system. J Agric Food Chem 47(4):1506–1513CrossRefGoogle Scholar
  30. 30.
    Fenaille F, Morgan F, Parisod V et al (2004) Solid-state glycation of beta-lactoglobulin by lactose and galactose: localization of the modified amino acids using mass spectrometric techniques. J Mass Spectrom 39(1):16–28CrossRefGoogle Scholar
  31. 31.
    French SJ, Harper WJ, Kleinholz NM et al (2002) Maillard reaction induced lactose attachment to bovine beta-lactoglobulin: Electrospray ionization and matrix-assisted laser desorption/ionization examination. J Agric Food Chem 50(4):820–823CrossRefGoogle Scholar
  32. 32.
    Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by electrospray ionization Lc Ms and Lc Ms Ms—methods for selective detection of glycopeptides in protein digests. Anal Chem 65(7):877–884CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dongguan University of TechnologyDongguanChina
  2. 2.Lacombe Research CentreAgriculture and Agri-Food CanadaLacombeCanada
  3. 3.Dongguan University of TechnologyDongguanChina

Personalised recommendations