Advertisement

Formalizing a Notion of Concentration Robustness for Biochemical Networks

  • Lucia Nasti
  • Roberta Gori
  • Paolo Milazzo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11176)

Abstract

The main goal of systems biology is to understand the dynamical properties of biological systems by investigating the interactions among the components of a biological system. In this work, we focus on the robustness property, a behaviour observed in several biological systems that allows them to preserve their functions despite external and internal perturbations. We first propose a new formal definition of robustness using the formalism of continuous Petri nets. In particular, we focus on robustness against perturbations to the initial concentrations of species. Then, we demonstrate the validity of our definition by applying it to the models of three different robust biochemical networks.

Keywords

Robustness Biochemical networks Petri nets 

Notes

Acknowledgements

This work has been supported by the project “Metodologie informatiche avanzate per l’analisi di dati biomedici” funded by the University of Pisa (PRA_2017_44).

References

  1. 1.
    Uri, A.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Boca Raton (2006)zbMATHGoogle Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57318-6_30CrossRefGoogle Scholar
  3. 3.
    Angeli, D., De Leenheer, P., Sontag, E.D.: On the structural monotonicity of chemical reaction networks, pp. 7–12. IEEE (2006)Google Scholar
  4. 4.
    Antoniotti, M., Mishra, B., Piazza, C., Policriti, A., Simeoni, M.: Modeling cellular behavior with hybrid automata: bisimulation and collapsing. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 57–74. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36481-1_6CrossRefGoogle Scholar
  5. 5.
    Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Specialized predictor for reaction systems with context properties. In: International Workshop on Concurrency, Specification and Programming, CS&P 2015, pp. 31–43 (2015)Google Scholar
  6. 6.
    Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Investigating dynamic causalities in reaction systems. Theoret. Comput. Sci. 623, 114–145 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Barbuti, R., Gori, R., Levi, F., Milazzo, P.: Specialized predictor for reaction systems with context properties. Fundamenta Informaticae 147(2–3), 173–191 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Barkai, N., Leibler, S.: Robustness in simple biochemical networks. Nature 387(6636), 913 (1997)CrossRefGoogle Scholar
  9. 9.
    Batchelor, E., Goulian, M.: Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc. Nat. Acad. Sci. U.S.A. 100(2), 691–696 (2003)CrossRefGoogle Scholar
  10. 10.
    Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36481-1_13CrossRefGoogle Scholar
  11. 11.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. Theoret. Comput. Sci. 410(33–34), 3065–3084 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular signalling networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78163-9_11CrossRefzbMATHGoogle Scholar
  13. 13.
    Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75(1–4), 263–280 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: symbolic analysis of biological signaling. In: Biocomputing 2002, pp. 400–412. World Scientific (2001)Google Scholar
  15. 15.
    Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. Theoret. Comput. Sci. 403(1), 52–70 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors-I. the deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987)CrossRefGoogle Scholar
  17. 17.
    Gilbert, D., Heiner, M.: From petri nets to differential equations – an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006).  https://doi.org/10.1007/11767589_11CrossRefGoogle Scholar
  18. 18.
    Gori, R., Levi, F.: Abstract interpretation based verification of temporal properties for bioambients. Inf. Comput. 208(8), 869–921 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic petri nets. Proc. Nat. Acad. Sci. U.S.A. 95(12), 6750–6755 (1998)CrossRefGoogle Scholar
  20. 20.
    Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems, pp. 265–292. Springer, Heidelberg (2000).  https://doi.org/10.1007/978-3-642-59615-5_13CrossRefGoogle Scholar
  21. 21.
    Kitano, H.: Systems biology: towards systems-level understanding of biological systems. In: Kitano, H. (ed.) Foundations of Systems Biology (2002)Google Scholar
  22. 22.
    Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826–837 (2004)CrossRefGoogle Scholar
  23. 23.
    Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in systems biology. ACM SIGMETRICS Perform. Eval. Rev. 35(4), 14–21 (2008)CrossRefGoogle Scholar
  24. 24.
    Li, X., Omotere, O., Qian, L., Dougherty, E.R.: Review of stochastic hybrid systems with applications in biological systems modeling and analysis. EURASIP J. Bioinf. Syst. Biol. 2017(1), 8 (2017)CrossRefGoogle Scholar
  25. 25.
    Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM (1985)Google Scholar
  26. 26.
    Lotka, A.J.: Contribution to the theory of periodic reactions. J. Phys. Chem. 14(3), 271–274 (1910)CrossRefGoogle Scholar
  27. 27.
    Nasti, L., Milazzo, P.: A computational model of internet addiction phenomena in social networks. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 86–100. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74781-1_7CrossRefGoogle Scholar
  28. 28.
    Paun, G.: Introduction to Membrane Computing. Springer, Heidelberg (2006).  https://doi.org/10.1007/978-3-642-56196-2CrossRefzbMATHGoogle Scholar
  29. 29.
    Pérez-Jiménez, M.J., Romero-Campero, F.J.: A study of the robustness of the EGFR signalling cascade using continuous membrane systems. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 268–278. Springer, Heidelberg (2005).  https://doi.org/10.1007/11499220_28CrossRefGoogle Scholar
  30. 30.
    Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: stochastic simulation of large-scale genetic regulatory networks. J. Bioinf. Comput. Biol. 3(02), 415–436 (2005)CrossRefGoogle Scholar
  31. 31.
    Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N., et al.: Petri net representations in metabolic pathways. In: ISMB, pp. 328–336 (1993)Google Scholar
  32. 32.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12), i169–i178 (2009)CrossRefGoogle Scholar
  33. 33.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures. Theoret. Comput. Sci. 412(26), 2827–2839 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010)CrossRefGoogle Scholar
  35. 35.
    Shinar, G., Feinberg, M.: Design principles for robust biochemical reaction networks: what works, what cannot work, and what might almost work. Mathe. Biosci. 231(1), 39–48 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Weisstein, E.W.: Logistic equation. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/LogisticEquation.html

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations