Advertisement

From Hyperedge Replacement Grammars to Decidable Hyperedge Replacement Games

  • Christoph Peuser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11176)

Abstract

We consider correctness of hyperedge replacement grammars under adverse conditions. In contrast to existing approaches, the influence of an adverse environment is considered in addition to system behaviour. To this end, we construct a hyperedge replacement game where rules represent the moves available to players and a temporal condition specifies the desired properties of the system. In particular, the construction of parity pushdown games from hyperedge replacement grammars results in a decidable class of games.

Keywords

Context-free graph grammars Game theory Hyperedge replacement grammars Pushdown games Parity games 

Notes

Acknowledgements

We would like to thank Annegret Habel, Reiko Heckel, Berthold Hoffmann and Mark Minas for helpful feedback on earlier versions of this paper.

References

  1. 1.
    Alabdullatif, M., Heckel, R.: Graph transformation games for negotiating features. In: Graph Computation Models (GCM 2016) (2016)Google Scholar
  2. 2.
    Autebert, J.M., Berstel, J., Boasson, L.: Context-free languages and pushdown-automata. In: Handbook of Formal Languages, vol. 1: Word Language Grammar, pp. 111–172. Berlin (1997)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71998-4_1CrossRefGoogle Scholar
  4. 4.
    Drewes, F., Habel, A., Kreowski, H.J.: Hyperedge replacement graph grammars. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 95–162. World Scientific (1997)Google Scholar
  5. 5.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory of typed attributed graph transformation based on adhesive HLR categories. Fundamenta Informaticae 74(1), 31–61 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36387-4CrossRefzbMATHGoogle Scholar
  7. 7.
    Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643. Springer, Heidelberg (1992).  https://doi.org/10.1007/BFb0013875CrossRefzbMATHGoogle Scholar
  8. 8.
    Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to nested conditions. MSCS 19, 245–296 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Series in Computer Science, 2nd edn. Addison-Wesley-Longman, Boston (2001)zbMATHGoogle Scholar
  10. 10.
    Kaiser, Ł.: Synthesis for structure rewriting systems. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 415–426. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03816-7_36CrossRefGoogle Scholar
  11. 11.
    Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Peuser, C.: From hyperedge replacement grammars to decidable hyperedge replacement games. In: Graph Computation Models (GCM 2018) (2018, Preproceedings). https://www.gcm2018.uni-bremen.de/assets/gcm_2018_paper_10.pdf
  13. 13.
    Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, pp. 46–57. IEEE Computer Society (1977)Google Scholar
  14. 14.
    Poskitt, C.M., Plump, D.: Verifying total correctness of graph programs. Electron. Commun. EASST 61 (2013). https://journal.ub.tu-berlin.de/eceasst/article/view/827
  15. 15.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the First Symposium on Logic in Computer Science, pp. 322–331. IEEE Computer Society (1986)Google Scholar
  16. 16.
    Walukiewicz, I.: Pushdown processes: Games and model-checking. Inf. Comput. 164(2), 234–263 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Carl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations