Advertisement

Short-Cut Rules

Sequential Composition of Rules Avoiding Unnecessary Deletions
  • Lars Fritsche
  • Jens Kosiol
  • Andy Schürr
  • Gabriele Taentzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11176)

Abstract

Sequences of rule applications in high-level replacement systems are difficult to adapt. Often, replacing a rule application at the beginning of a sequence, i.e., reverting a rule and applying another one instead, is prevented by structure created via rule applications later on in the sequence. A trivial solution would be to roll back all applications and reapply them in a proper way. This, however, has the disadvantage of being computationally expensive and, furthermore, may cause the loss of information in the process. Moreover, using existing constructions to compose the reversal of a rule with the application of another one, in particular the concurrent and amalgamated rule constructions, does not prevent the loss of information in case that the first rule deletes elements being recreated by the second one. To cope with both problems, we introduce a new kind of rule composition through ‘short-cut rules’. We present our new kind of rule composition for monotonic rules in adhesive HLR systems, as they provide a well-established generalization of graph-based transformation systems, and motivate it on the example of Triple Graph Grammars, a declarative and rule-based bidirectional transformation approach.

Keywords

Rule composition Amalgamated rule E-concurrent rule Triple graph grammars 

Notes

Acknowledgments

This work was partially funded by the German Research Foundation (DFG), project “Triple Graph Grammars (TGG) 2.0”.

References

  1. 1.
    Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations. A synchronization mechanism. J. Comput. Syst. Sci. 34(2), 377–408 (1987).  https://doi.org/10.1016/0022-0000(87)90030-4MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-31188-2CrossRefzbMATHGoogle Scholar
  3. 3.
    Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: \(\cal{M}\)-adhesive transformation systems with nested application conditions. Part 1: parallelism, concurrency and amalgamation. Math. Struct. Comput. Sci. 24(4), 240406 (2014).  https://doi.org/10.1017/S0960129512000357MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fritsche, L., Kosiol, J., Schürr, A., Taentzer, G.: Short-cut rules. Sequential composition of rules avoiding unnecessary deletions: extended version. Technical report, Philipps-Universität Marburg (2018). https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/forschung/publikationen/2018/FKST18-TR.pdf
  5. 5.
    Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009).  https://doi.org/10.1017/S0960129508007202MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theor. Inf. Appl. 39(3), 511–545 (2005).  https://doi.org/10.1051/ita:2005028MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., Schürr, A.: Leveraging incremental pattern matching techniques for model synchronisation. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 179–195. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61470-0_11CrossRefGoogle Scholar
  8. 8.
    Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G.: Multi-amalgamated triple graph grammars: formal foundation and application to visual language translation. J. Vis. Lang. Comput. 42, 99–121 (2017).  https://doi.org/10.1016/j.jvlc.2016.03.001CrossRefzbMATHGoogle Scholar
  9. 9.
    Leblebici, E., Anjorin, A., Schürr, A.: Inter-model consistency checking using triple graph grammars and linear optimization techniques. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 191–207. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54494-5_11CrossRefGoogle Scholar
  10. 10.
    Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-59071-4_45CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.TU DarmstadtDarmstadtGermany
  2. 2.Philipps-Universität MarburgMarburgGermany

Personalised recommendations