Advertisement

Model Based Development of Data Integration in Graph Databases Using Triple Graph Grammars

  • Abdullah Alqahtani
  • Reiko Heckel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11176)

Abstract

Graph databases such as neo4j are designed to handle and integrate big data from heterogeneous sources. For flexibility and performance they do not ensure data quality through schemata but leave it to the application level. In this paper, we present a model-driven approach for data integration through graph databases with data sources in relational databases. We model query and update operations in neo4j by triple graph grammars and map these to Gremlin code for execution. In this way we provide a model-based approach to data integration that is both visual and formal while providing the data quality assurances of a schema-based solution.

Keywords

Data integration Graph databases Model-based development Triple graph grammars 

References

  1. 1.
  2. 2.
    Anjorin, A., Lauder, M., Patzina, S., Schürr, A.: eMoflon: leveraging EMF and professional CASE tools. In: 3 Workshop Methodische Entwicklung von Modellierungswerkzeugen (MEMWe 2011) (2011)Google Scholar
  3. 3.
    Bastian, M., Heymann, S., Jacomy, M., et al.: Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 361–362 (2009)Google Scholar
  4. 4.
    Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4EMF, a scalable persistence layer for EMF models. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 230–241. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09195-2_15CrossRefGoogle Scholar
  5. 5.
    Bergmann, G., Horváth, Á., Ráth, I., Varró, D.: A benchmark evaluation of incremental pattern matching in graph transformation. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 396–410. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87405-8_27CrossRefzbMATHGoogle Scholar
  6. 6.
    Csardi, M.G.: Package ‘igraph’ 3(09), 214–217 (2013)Google Scholar
  7. 7.
    Daniel, G., Jouault, F., Sunyé, G., Cabot, J.: Gremlin-ATL: a scalable model transformation framework. In: 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 462–472, October 2017Google Scholar
  8. 8.
    Daniel, G., Sunyé, G., Cabot, J.: Mogwaï: a framework to handle complex queries on large models. In: International Conference on Research Challenges in Information Science (RCIS 2016), Grenoble, France, June 2016. https://hal.archives-ouvertes.fr/hal-01344019
  9. 9.
    Daniel, G., Sunyé, G., Cabot, J.: UMLtoGraphDB: mapping conceptual schemas to graph databases. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 430–444. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46397-1_33CrossRefGoogle Scholar
  10. 10.
    Fensel, D., et al.: Product data integration in B2B e-commerce. IEEE Intell. Syst. 16(4), 54–59 (2001)CrossRefGoogle Scholar
  11. 11.
    Giese, H., Hildebrandt, S.: Efficient model synchronization of large-scale models. No. 28, Universitätsverlag Potsdam (2009)Google Scholar
  12. 12.
    Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 9–16. VLDB Endowment (2006)Google Scholar
  13. 13.
    Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Formal analysis of model transformations based on triple graph grammars. Math. Struct. Comput. Sci. 24(04), 240408 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ho, J., Weber, J., Price, M.: BXE2E: a bidirectional transformation approach for medical record exchange. In: Guerra, E., van den Brand, M. (eds.) ICMT 2017. LNCS, vol. 10374, pp. 155–170. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61473-1_11CrossRefGoogle Scholar
  15. 15.
    Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of cypher, gremlin and native access in Neo4j. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops, pp. 195–204. ACMGoogle Scholar
  16. 16.
    Hughes, R.: Agile Data Warehousing: Delivering World-Class Business Intelligence Systems Using Scrum and XP. IUniverse, Bloomington (2008)Google Scholar
  17. 17.
    Hunger, M.: Neo4j-shell tools. GitHub repository (2013). https://github.com/jexp/neo4j-shell-tools
  18. 18.
    Kindler, E., Rubin, V., Wagner, R.: An adaptable TGG interpreter for in-memory model transformation. In: Proceedings of the 2nd International Fujaba Days 2004, Darmstadt, Germany. Technical report, vol. tr-ri-04-253, pp. 35–38. University of Paderborn, September 2004Google Scholar
  19. 19.
    Knigs, A., Schrr, A.: Tool integration with triple graph grammars - a survey. Electron. Notes Theor. Comput. Sci. 148(1), 113–150 (2006). http://www.sciencedirect.com/science/article/pii/S1571066106000454. proceedings of the School of SegraVis Research Training Network on Foundations of Visual Modelling Techniques (FoVMT 2004)
  20. 20.
    Leblebici, E., Anjorin, A., Schürr, A.: A catalogue of optimization techniques for triple graph grammars. Modellierung 19, 21 (2014)zbMATHGoogle Scholar
  21. 21.
    Levendovszky, T., Charaf, H.: Pattern matching in metamodel-based model transformation systems. Period. Polytech. Electr. Eng. 49(1–2), 87–107 (2006)Google Scholar
  22. 22.
    Miller, J.J.: Graph database applications and concepts with Neo4j. In: Proceedings of the Southern Association for Information Systems Conference, Atlanta, GA, USA, 23rd–24th March (2013)Google Scholar
  23. 23.
    Münch, T., Buchmann, R., Pfeffer, J., Ortiz, P., Christl, C., Hladik, J., Ziegler, J., Lazaro, O., Karagiannis, D., Urbas, L.: An innovative virtual enterprise approach to agile micro and SME-based collaboration networks. In: Camarinha-Matos, L.M., Scherer, R.J. (eds.) PRO-VE 2013. IAICT, vol. 408, pp. 121–128. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40543-3_13CrossRefGoogle Scholar
  24. 24.
    Musset, J., et al.: Acceleo user guide, vol. 2 (2006). http://acceleo.org/doc/obeo/en/acceleo-2.6-user-guide. pdf
  25. 25.
    Rodriguez, M.A., De Wilde, P.: Gremlin (2011). https://github.com/tinkerpop/gremlin/wiki
  26. 26.
    Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-59071-4_45CrossRefGoogle Scholar
  27. 27.
    Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling Framework. Pearson Education, London (2008)Google Scholar
  28. 28.
    The Neo4j Team: (2018). https://neo4j.com. Neo4j Graph Database Platform
  29. 29.
    eMoflon team, T.: An introduction to metamodelling and graph transformations with eMoflon. Technical report, TU Darmsadt (2014)Google Scholar
  30. 30.
    Toulmé, A., Inc., I.: Presentation of EMF compare utility. In: Eclipse Modeling Symposium, pp. 1–8Google Scholar
  31. 31.
    Varró, G., Friedl, K., Varró, D.: Graph transformation in relational databases. Electron. Notes Theor. Comput. Sci. 127(1), 167–180 (2005). Proceedings of the International Workshop on Graph-Based Tools (GraBaTs 2004)CrossRefGoogle Scholar
  32. 32.
    Wasserman, A.I.: Tool integration in software engineering environments. In: Long, F. (ed.) Software Engineering Environments. LNCS, vol. 467, pp. 137–149. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-53452-0_38CrossRefGoogle Scholar
  33. 33.
    Weber, J.H.: GRAPE – a graph rewriting and persistence engine. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 209–220. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61470-0_13CrossRefGoogle Scholar
  34. 34.
    Wieber, M., Anjorin, A., Schürr, A.: On the usage of TGGs for automated model transformation testing. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 1–16. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08789-4_1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of LeicesterLeicesterUK

Personalised recommendations