Computing the Parallelism Degree of Timed BPMN Processes

  • Francisco Durán
  • Camilo Rocha
  • Gwen Salaün
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11176)


A business process is a combination of structured and related activities that aim at fulfilling a specific organizational goal for a customer or market. An important measure when developing a business process is the degree of parallelism, namely, the maximum number of tasks that are executable in parallel at any given time in a process. This measure determines the peak demand on tasks and thus can provide valuable insight on the problem of resource allocation in business processes. This paper considers timed business processes modeled in BPMN, a workflow-based graphical notation for processes, where execution times can be associated to several BPMN constructs such as tasks and flows. An encoding of timed business processes into Maude’s rewriting logic system is presented, enabling the automatic computation of timed degrees of parallelism for business processes. The approach is illustrated with a simple yet realistic case study in which the degree of parallelism is used to improve the business process design with the ultimate goal of optimizing resources and, therefore, with the potential for reducing operating costs.



The authors would like to thank the anonymous reviewers for their valuable comments on an earlier draft of this paper. F. Durán has been partially supported by Spanish MINECO/FEDER project TIN2014-52034-R. The work of C. Rocha was partially supported by CAPES, Colciencias, and Inria via the STIC AmSud project “EPIC: EPistemic Interactive Concurrency” (Proc. No 88881.117603/2016-01), and by Capital Semilla 2017, project “SCORES: Stochastic Concurrency in Rewrite-based Probabilistic Models” (Proj. No. 020100610).


  1. 1.
  2. 2.
    Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in membership equational logic. Theor. Comput. Sci. 236(1), 35–132 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007). Scholar
  4. 4.
    Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., Vandin, A.: BProVe: a formal verification framework for business process models. In: Proceedings of ASE, pp. 217–228. IEEE Computer Society (2017)Google Scholar
  5. 5.
    Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)CrossRefGoogle Scholar
  6. 6.
    Durán, F., Rocha, C., Salaün, G.: Stochastic analysis of BPMN with time in rewriting logic. Sci. Comput. Program. 168, 1–17 (2018)CrossRefGoogle Scholar
  7. 7.
    Durán, F., Salaün, G.: Verifying timed BPMN processes using Maude. In: Jacquet, J.-M., Massink, M. (eds.) COORDINATION 2017. LNCS, vol. 10319, pp. 219–236. Springer, Cham (2017). Scholar
  8. 8.
    El-Saber, N., Boronat, A.: BPMN formalization and verification using Maude. In: Proceedings of BM-FA 2014, pp. 1–8. ACM (2014)Google Scholar
  9. 9.
    Esparza, J.: Reachability in live and safe free-choice Petri nets is NP-complete. Theor. Comput. Sci. 198, 211–224 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    ISO/IEC. International Standard 19510, Information technology - Business Process Model and Notation (2013)Google Scholar
  11. 11.
    Kheldoun, A., Barkaoui, K., Ioualalen, M.: Specification and verification of complex business processes - a high-level Petri net-based approach. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 55–71. Springer, Cham (2015). Scholar
  12. 12.
    Krishna, A., Poizat, P., Salaün, G.: VBPMN: automated verification of BPMN processes (tool paper). In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 323–331. Springer, Cham (2017). Scholar
  13. 13.
    Mateescu, R., Salaün, G., Ye, L.: Quantifying the parallelism in BPMN processes using model checking. In: Proceedings of CBSE 2014, pp. 159–168. ACM (2014)Google Scholar
  14. 14.
    Mayr, E.: An algorithm for the general Petri net reachability problem. SIAM J. Comput. 13(3), 441–460 (1984)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Morales, L.E.M., Capel, M.I., Pérez, M.A.: Conceptual framework for business processes compositional verification. Inf. Soft. Technol. 54(2), 149–161 (2012)CrossRefGoogle Scholar
  17. 17.
    Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time Maude. High.-Order Symbolic Comput. 20(1–2), 161–196 (2007)CrossRefGoogle Scholar
  18. 18.
    OMG. Business Process Model and Notation (BPMN) - Version 2.0, January 2011Google Scholar
  19. 19.
    Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies. In: Proceedings of SAC 2012, pp. 1927–1934. ACM Press (2012)Google Scholar
  20. 20.
    Sun, Y., Su, J.: Computing degree of parallelism for BPMN processes. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 1–15. Springer, Heidelberg (2011). Scholar
  21. 21.
    Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg (2008). Scholar
  22. 22.
    Wynn, M.T., Verbeek, H.M.W., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Business process verification - finally a reality!. Bus. Process Manag. J. 15(1), 74–92 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of MálagaMálagaSpain
  2. 2.Pontificia Universidad JaverianaCaliColombia
  3. 3.Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIGGrenobleFrance

Personalised recommendations