Advertisement

Coordination of Complex Socio-Technical Systems: Challenges and Opportunities

  • Stefano Mariani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11176)

Abstract

The issue of coordination in Socio-Technical Systems (STS) mostly stems from “humans-in-the-loop”: besides software-software we have software-human interactions to handle, too. Also, a number of peculiarities and related engineering challenges make a socio-technical gap easy to rise, in the form of a gap between what the computational platform provides, and what the users are expecting to have. In this paper we try to shed some light on the issue of engineering coordination mechanisms and policies in STS. Accordingly, we highlight the main challenges, the opportunities we have to deal with them, and a few selected approaches for specific STS application domains.

Keywords

Coordination Socio-technical systems MoK Speaking objects Open image in new window Self-organisation BIC Argumentation 

Notes

Acknowledgement

This work has been partially supported by the CONNECARE (Personalised Connected Care for Complex Chronic Patients) project (EU H2020-RIA, Contract No. 689802).

References

  1. 1.
    Ackerman, M.S.: The intellectual challenge of CSCW: the gap between social requirements and technical feasibility. Hum.-Comput. Interact. 15(2–3), 179–203 (2000)CrossRefGoogle Scholar
  2. 2.
    ACM, US Public Policy Council: statement on algorithmic transparency and accountability, January 2017. https://www.acm.org/binaries/content/assets/public-policy/2017_usacm_statement_algorithms.pdf
  3. 3.
    Atzori, L., Iera, A., Morabito, G., Nitti, M.: The social internet of things (SIoT)-when social networks meet the internet of things: concept, architecture and network characterization. Comput. Netw. 56(16), 3594–3608 (2012)CrossRefGoogle Scholar
  4. 4.
    Babaoglu, O., et al.: Design patterns from biology for distributed computing. ACM Trans. Auton. Adapt. Syst. (TAAS) 1(1), 26–66 (2006)CrossRefGoogle Scholar
  5. 5.
    Bourzac, K.: Millimeter-scale computers: now with deep-learning neural networks on board, February 2017. https://goo.gl/sciVTC
  6. 6.
    Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02161-9_3CrossRefGoogle Scholar
  7. 7.
    Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software needs quantitative verification at runtime. Commun. ACM 55(9), 69–77 (2012)CrossRefGoogle Scholar
  8. 8.
    Caminada, M.W., Kutlak, R., Oren, N., Vasconcelos, W.W.: Scrutable plan enactment via argumentation and natural language generation. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS 2014, pp. 1625–1626. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2014)Google Scholar
  9. 9.
    Castelfranchi, C.: Modelling social action for AI agents. Artif. Intell. 103(1–2), 157–182 (1998)zbMATHCrossRefGoogle Scholar
  10. 10.
    Castelfranchi, C., Pezzullo, G., Tummolini, L.: Behavioral implicit communication (BIC): communicating with smart environments via our practical behavior and its traces. Int. J. Ambient. Comput. Intell. 2(1), 1–12 (2010)CrossRefGoogle Scholar
  11. 11.
    Castlefranchi, C.: From conversation to interaction via behavioral communication: for a semiotic design of objects, environments, and behaviors. In: Theories and Practice in Interaction Design, pp. 157–79 (2006)Google Scholar
  12. 12.
    Danaher, J.: The threat of algocracy: reality, resistance and accommodation. Philos. Technol. 29(3), 245–268 (2016)CrossRefGoogle Scholar
  13. 13.
    De Wolf, T., Holvoet, T.: Design patterns for decentralised coordination in self-organising emergent systems. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 28–49. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-69868-5_3CrossRefGoogle Scholar
  14. 14.
    Diakopoulos, N.: Accountability in algorithmic decision making. Commun. ACM 59(2), 56–62 (2016)CrossRefGoogle Scholar
  15. 15.
    Fernández, J.M., et al.: Towards argumentation-based recommendations for personalised patient empowerment. In: Elsweiler, D., et al. (eds.) Proceedings of the 2nd International Workshop on Health Recommender Systems co-located with the 11th International Conference on Recommender Systems (RecSys 2017). CEUR Workshop Proceedings, Como, Italy, 31 August 2017, vol. 1953, pp. 2–5. CEUR-WS.org (2017)Google Scholar
  16. 16.
    Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Nat. Comput. 12(1), 43–67 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Di Marzo Serugendo, G., Karageorgos, A.: Self-organisation and emergence in MAS: an overview. Informatica 30(1), 45–54 (2006)zbMATHGoogle Scholar
  18. 18.
    Goodman, B., Flaxman, S.: European Union regulations on algorithmic decision-making and a “right to explanation”. ArXiv e-prints, June 2016Google Scholar
  19. 19.
    Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6(1), 41–80 (1959)CrossRefGoogle Scholar
  20. 20.
    Hillston, J., Pitt, J., Wirsing, M., Zambonelli, F.: Collective adaptive systems: qualitative and quantitative modelling and analysis (Dagstuhl Seminar 14512). Dagstuhl Rep. 4(12), 68–113 (2015)Google Scholar
  21. 21.
    Hudson, S.E., Smith, I.: Techniques for addressing fundamental privacy and disruption tradeoffs in awareness support systems. In: Proceedings of the 1996 ACM Conference on Computer Supported Cooperative Work, CSCW 1996, pp. 248–257. ACM, New York (1996)Google Scholar
  22. 22.
    Hutchins, E.: Cognition in the Wild. MIT Press, Cambridge (1995)Google Scholar
  23. 23.
    Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approximated model-checking for self-organising coordination. Sci. Comput. Program. 110, 23–50 (2015)CrossRefGoogle Scholar
  24. 24.
    Lippi, M., Mamei, M., Mariani, S., Zambonelli, F.: An argumentation-based perspective over the social IoT. IEEE Internet Things J. 5, 1 (2017)Google Scholar
  25. 25.
    Lippi, M., Mamei, M., Mariani, S., Zambonelli, F.: Coordinating distributed speaking objects. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 1949–1960, June 2017Google Scholar
  26. 26.
    Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: towards a unifying approach to the engineering of swarm intelligent systems. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 68–81. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39173-8_6zbMATHCrossRefGoogle Scholar
  27. 27.
    Mariani, S.: On the “local-to-global” issue in self-organisation: chemical reactions with custom kinetic rates. In: 8th IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2014, pp. 61–67. IEEE CS, London, September 2014Google Scholar
  28. 28.
    Mariani, S.: Coordination of Complex Sociotechnical Systems - Self-organisation of Knowledge in MoK. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47109-9CrossRefGoogle Scholar
  29. 29.
    Mariani, S., Omicini, A.: Molecules of knowledge: self-organisation in knowledge-intensive environments. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) IDC 2012. SCI, vol. 446, pp. 17–22. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-32524-3_4CrossRefGoogle Scholar
  30. 30.
    Mariani, S., Omicini, A.: Anticipatory coordination in socio-technical knowledge-intensive environments: behavioural implicit communication in \({MoK}\). In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS (LNAI), vol. 9336, pp. 102–115. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24309-2_8CrossRefGoogle Scholar
  31. 31.
    Medsker, L.: Algorithmic Transparency and Accountability - AI Matters (2017) https://sigai.acm.org/aimatters/blog/2017/06/01/algorithmic-transparency-and-accountability/
  32. 32.
    Nagpal, R.: A catalog of biologically-inspired primitives for engineering self-organization. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, pp. 53–62. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24701-2_4zbMATHCrossRefGoogle Scholar
  33. 33.
    Nature: More accountability for big-data algorithms. Nature 537(7621), 449–449 (2016)Google Scholar
  34. 34.
    Nikolai, C., Madey, G.: Tools of the trade: a survey of various agent based modeling platforms. J. Artif. Soc. Soc. Simul. 12(2), 2 (2009)Google Scholar
  35. 35.
    O’Day, V.L., Bobrow, D.G., Shirley, M.: The social-technical design circle. In: Proceedings of the 1996 ACM Conference on Computer Supported Cooperative Work, pp. 160–169. ACM (1996)Google Scholar
  36. 36.
    Omicini, A.: Agents writing on walls: cognitive stigmergy and beyond. In: Paglieri, F., Tummolini, L., Falcone, R., Miceli, M. (eds.) The Goals of Cognition. Essays in Honor of Cristiano Castelfranchi, Tributes, vol. 20, Chap. 29, pp. 543–556. College Publications, London, December 2012Google Scholar
  37. 37.
    Orlikowski, W.J.: The duality of technology: rethinking the concept of technology in organizations. Organ. Sci. 3(3), 398–427 (1992)CrossRefGoogle Scholar
  38. 38.
    Pariser, E.: The Filter Bubble: What the Internet is Hiding From You. Penguin, Harmondsworth (2011)Google Scholar
  39. 39.
    Dyke Parunak, H.: A survey of environments and mechanisms for human-human stigmergy. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 163–186. Springer, Heidelberg (2006).  https://doi.org/10.1007/11678809_10CrossRefGoogle Scholar
  40. 40.
    Persily, N.: Can democracy survive the internet? J. Democr. 28(2), 63–76 (2017)CrossRefGoogle Scholar
  41. 41.
    Piunti, M., Castelfranchi, C., Falcone, R.: Anticipatory coordination through action observation and behavior adaptation. In: Proceedings of AISB (2007)Google Scholar
  42. 42.
    Rahwan, I., Ramchurn, S.D., Jennings, N.R., Mcburney, P., Parsons, S., Sonenberg, L.: Argumentation-based negotiation. Knowl. Eng. Rev. 18(4), 343–375 (2003)CrossRefGoogle Scholar
  43. 43.
    Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy: towards a framework based on agents and artifacts. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71103-2_7CrossRefGoogle Scholar
  44. 44.
    Schmidt, K., Wagner, I.: Ordering systems: coordinative practices and artifacts in architectural design and planning. Comput. Support. Coop. Work. (CSCW) 13(5–6), 349–408 (2004)CrossRefGoogle Scholar
  45. 45.
    DI Marzo Serugendo, G., et al.: Self-organisation: paradigms and applications. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, pp. 1–19. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24701-2_1zbMATHCrossRefGoogle Scholar
  46. 46.
    Suchman, L.A.: Situated actions. In: Plans and Situated Actions: The Problem of Human-Machine Communication, Chap. 4, pp. 49–67. Cambridge University Press, New York (1987)Google Scholar
  47. 47.
    Susi, T., Ziemke, T.: Social cognition, artefacts, and stigmergy: a comparative analysis of theoretical frameworks for the understanding of artefact-mediated collaborative activity. Cogn. Syst. Res. 2(4), 273–290 (2001)CrossRefGoogle Scholar
  48. 48.
    Usman Iftikhar, M., Weyns, D.: A case study on formal verification of self-adaptive behaviors in a decentralized system. ArXiv e-prints, August 2012Google Scholar
  49. 49.
    Van Eemeren, F.H., Grootendorst, R., Johnson, R.H., Plantin, C., Willard, C.A.: Fundamentals of Argumentation Theory: A Handbook of Historical Backgrounds and Contemporary Developments. Routledge, London (2013)Google Scholar
  50. 50.
    Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 143–162. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02053-7_8CrossRefGoogle Scholar
  51. 51.
    Viroli, M., Damiani, F.: Type-based self-stabilisation for computational fields. Log. Methods Comput. Sci. 11 (2015)Google Scholar
  52. 52.
    Whitworth, B.: Socio-technical systems. In: Encyclopedia of Human Computer Interaction, pp. 533–541 (2006)Google Scholar
  53. 53.
    Zambonelli, F., et al.: Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive Mob. Comput. 17, 236–252 (2015). Special Issue “10 years of Pervasive Computing” In Honor of Chatschik BisdikianCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Sciences and Methods for EngineeringUniversità degli Studi di Modena e Reggio EmiliaReggio EmiliaItaly

Personalised recommendations