Advertisement

A Flexible Framework for FMI-Based Co-Simulation of Human-Centred Cyber-Physical Systems

  • Maurizio Palmieri
  • Cinzia Bernardeschi
  • Paolo Masci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11176)

Abstract

This paper presents our on-going work on developing a flexible framework for formal co-simulation of human-centred cyber-physical systems. The framework builds on and extends an existing prototyping toolkit, adding novel functionalities for automatic generation of user interface prototypes equipped with a standard FMI-2 co-simulation interface. The framework is developed in JavaScript, and uses a flexible templating mechanism for converting stand-alone device prototypes into Functional Mockup Units (FMUs) capable of exchanging commands and data with any FMI-compliant co-simulation engine. Two concrete examples are presented to demonstrate the capabilities of the framework.

Notes

Acknowledgments

Paolo Masci is funded by the ERDF (European Regional Development Fund) through Operational Programme for Competitiveness and Internationalisation COMPETE 2020 Programme, within project POCI-01-0145-FEDER-006961, and by National Funds through the Portuguese funding agency FCT (Fundação para a Ciência e a Tecnologia) as part of project UID/EEA/50014/2013.

References

  1. 1.
    Arney, D., et al.: Simulation of medical device network performance and requirements for an integrated clinical environment. Biomed. Instrum. Technol. 46(4), 308–315 (2012)CrossRefGoogle Scholar
  2. 2.
    Bernardeschi, C., Domenici, A., Masci, P.: A PVS-simulink integrated environment for model-based analysis of cyber-physical systems. IEEE Trans. Softw. Eng. 44(6), 512–533 (2018)CrossRefGoogle Scholar
  3. 3.
    Blochwitz, T., et al.: Functional mockup interface 2.0: the standard for tool independent exchange of simulation models. In: Proceedings of the 9th International Modelica Conference, pp. 173–184. The Modelica Association (2012)Google Scholar
  4. 4.
    Broenink, J.F.: 20-SIM software for hierarchical bond-graph/block-diagram models. Simul. Pract. Theory 7(5–6), 481–492 (1999)CrossRefGoogle Scholar
  5. 5.
    Chaudemar, J.-C., Savicks, V., Butler, M., Colley, J.: Co-simulation of Event-B and Ptolemy II models via FMI. In: ERTS 2014, Embedded real time software and systems, Toulouse, FR (2014)Google Scholar
  6. 6.
    Couto, L.D., Basagiannis, S., Ridouane, E.H., Mady, A.E.-D., Hasanagic, M., Larsen, P.G.: Injecting formal verification in FMI-based co-simulations of cyber-physical systems. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 284–299. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74781-1_20CrossRefGoogle Scholar
  7. 7.
    Fritzson, P., et al.: The openmodelica modeling, simulation, and development environment. In: 46th Conference on Simulation and Modelling of the Scandinavian Simulation Society (SIMS2005) (2005)Google Scholar
  8. 8.
    Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: state of the art. CoRR, abs/1702.00686 (2017)Google Scholar
  9. 9.
    Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The overture initiative integrating tools for VDM. ACM SIGSOFT Softw. Eng. Notes 35(1), 1–6 (2010)CrossRefGoogle Scholar
  10. 10.
    Larsen, P.G., et al.: Integrated tool chain for model-based design of cyber-physical systems: the INTO-CPS project. In: 2016 2nd International Workshop on Modelling, Analysis, and Control of Complex CPS (CPS Data), pp. 1–6. IEEE (2016)Google Scholar
  11. 11.
    Masci, P., Mallozzi, P., DeAngelis, F.L., Serugendo, G.D.M., Curzon, P.: Using PVSio-web and SAPERE for rapid prototyping of user interfaces in Integrated Clinical Environments. In: Proceedings of the Workshop on Verification and Assurance (Verisure2015), Co-located with CAV2015 (2015)Google Scholar
  12. 12.
    Masci, P., Oladimeji, P., Zhang, Y., Jones, P., Curzon, P., Thimbleby, H.: PVSio-web 2.0: joining PVS to HCI. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 470–478. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21690-4_30CrossRefGoogle Scholar
  13. 13.
    Mauro, G., Thimbleby, H., Domenici, A., Bernardeschi, C.: Extending a user interface prototyping tool with automatic MISRA C code generation. arXiv preprint arXiv:1701.08468 (2017)
  14. 14.
    Muñoz, C.: Rapid prototyping in PVS. Technical report NIA 2003–03, NASA/CR-2003-212418, National Institute of Aerospace, Hampton, VA, USA (2003)Google Scholar
  15. 15.
    CNN News: Tesla in autopilot mode crashes into fire truck (2018). http://money.cnn.com/2018/01/23/technology/tesla-fire-truck-crash/index.html
  16. 16.
    CNN News: Uber self-driving car kills pedestrian in first fatal autonomous crash (2018). http://money.cnn.com/2018/03/19/technology/uber-autonomous-car-fatal-crash/index.html
  17. 17.
    Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.: PVS: combining specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61474-5_91CrossRefGoogle Scholar
  18. 18.
    Palensky, P., Van Der Meer, A.A., Lopez, C.D., Joseph, A., Pan, K.: Cosimulation of intelligent power systems: fundamentals, software architecture, numerics, and coupling. IEEE Ind. Electron. Mag. 11(1), 34–50 (2017)CrossRefGoogle Scholar
  19. 19.
    Palensky, P., van der Meer, A., Lopez, C., Joseph, A., Pan, K.: Applied cosimulation of intelligent power systems: implementing hybrid simulators for complex power systems. IEEE Ind. Electron. Mag. 11(2), 6–21 (2017)CrossRefGoogle Scholar
  20. 20.
    Palmieri, M., Bernardeschi, C., Masci, P.: Co-simulation of semi-autonomous systems: the line follower robot case study. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 423–437. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74781-1_29CrossRefGoogle Scholar
  21. 21.
    Sander, I., Jantsch, A.: System modeling and transformational design refinement in forsyde [formal system design]. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 23(1), 17–32 (2004)CrossRefGoogle Scholar
  22. 22.
    Wang, B., Baras, J. S.: HybridSim: a modeling and co-simulation toolchain for cyber-physical systems. In: 2013 IEEE/ACM 17th International Symposium on Distributed Simulation and Real Time Applications, pp. 33–40, October 2013Google Scholar
  23. 23.
    Zambonelli, F., et al.: Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive Mob. Comput. 17, 236–252 (2015)CrossRefGoogle Scholar
  24. 24.
    Zeyda, F., Ouy, J., Foster, S., Cavalcanti, A.: Formalising cosimulation models. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 453–468. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74781-1_31CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversity of FlorenceFlorenceItaly
  2. 2.Dipartimento di Ingegneria dell’InformazioneUniversity of PisaPisaItaly
  3. 3.HASLab/INESC TEC and Universidade do MinhoBragaPortugal

Personalised recommendations