Towards a Cognitive Architecture for the Formal Analysis of Human Behaviour and Learning

  • Antonio CeroneEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11176)


In this paper we propose a cognitive architecture for the modelling of automatic and deliberate human behaviour as it occurs and evolves in a living environment or in interaction with machine interfaces. Such a cognitive architecture supports the timed modelling of an environment featuring a spatial topology and consisting of an arbitrary number of systems, interfaces and human components. Alternative models of short-term memory can be considered and explored, and long-term memory evolves throughout the time by exploiting experiences and mimicking the creation of expectations as part of mental modelling.


Formal modelling Cognitive architecture Interactive systems Rewriting logic Maude rewrite system 


  1. 1.
    Abowd, G., Beale, R.: Users, systems and interfaces: a unifying framework for interaction. In: People and Computer VI (HCI 1991), pp. 73–87. Cambridge University Press (1991)Google Scholar
  2. 2.
    Anderson, J.R.: The Architecture of Cognition. Psychology Press, London (1983)Google Scholar
  3. 3.
    Broccia, G., Masci, P., Milazzo, P.: Modelling and analysis of human memory load in multitasking scenarios. In: EICS 2018. ACM (2018)Google Scholar
  4. 4.
    Broccia, G., Milazzo, P., Ölveczky, P.C.: An executable formal framework for safety-critical human multitasking. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 54–69. Springer, Cham (2018). Scholar
  5. 5.
    Cerone, A.: A cognitive framework based on rewriting logic for the analysis of interactive systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp. 287–303. Springer, Cham (2016). Scholar
  6. 6.
    Cerone, A., Zhexenbayeva, A.: Using formal methods to validate research hypotheses: the Duolingo case study. In: STAF 2018 Workshops (DataMod). LNCS, vol. 11176, pp. 163–170. Springer, Cham (2018)Google Scholar
  7. 7.
    Clavel, M., et al.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003). Scholar
  8. 8.
    Golosio, B., Cangelosi, A., Gamotina, O., Masala, G.L.: A cognitive neural model of executive functions in natural language processing. In: Proceedings of BICA 2015 of Procedia Computer Science, vol. 71, pp. 196–201. Elsevier (2015)Google Scholar
  9. 9.
    Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)Google Scholar
  10. 10.
    Norman, D.A., Shallice, T.: Attention to action: willed and automatic control of behaviour. In: Consciousness and Self-Regulation, Advances in Research and Theory, Vol. 4. Plenum Press (1986)Google Scholar
  11. 11.
    Ölveczky, P.C.: Designing Reliable Distributed Systems - A Formal Methods Approach Based on Modeling in Maude. Springer, Heidelberg (2017). Undergraduate Topics in Computer ScienceCrossRefzbMATHGoogle Scholar
  12. 12.
    Rukšėenas, R., Curzon, P., Blandford, A.: Modelling rational user behaviour as games between an angel and a demon. In: Cerone, A., Gruner, S. (eds.), Proceedings of SEFM 2008, pp. 355–364. IEEE Press (2008)Google Scholar
  13. 13.
    Samsonovich, A.V.: Towards a unified catalog of implemented cognitive architectures. In: Biologically Inspired Cognitive Architectures (BICA 2010), pp. 195–244. IOS Press (2010)Google Scholar
  14. 14.
    Sun, R., Slusarz, P., Terry, C.: The interaction of the explicit and implicit in skill learning: a dual-process approach. Psychol. Rev. 112, 159–192 (2005)CrossRefGoogle Scholar
  15. 15.
    Zhang, M., Wang, F., Yin, J.: A survey on human computer interaction technology for ATM. Intell. Eng. Syst. 6(1), 20–29 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceNazarbayev UniversityAstanaKazakhstan

Personalised recommendations