Advertisement

FormalMiner: A Formal Framework for Refinement Mining

  • Antonio Cerone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11176)

Abstract

Refinement mining has been inspired by process mining techniques and aims to refine an abstract non-deterministic model by sifting it using event logs as a sieve until a reasonably concise model is achieved. FormalMiner is a formal framework that implements model mining using Maude, a modelling language based on rewriting logic. Once the final formal model is attained, it can be used, within the same rewriting-logic framework, to predict the future evolution of the behaviour through simulation, to carry out further validation or to analyse properties through model checking. In this paper we focus on the refinement mining capability of FormalMiner and we illustrate it using a case study from ecology.

Keywords

Formal methods Model-driven approaches Rewriting logic Maude Process mining Application to ecosystem modelling 

References

  1. 1.
    Basuki, T.A., Cerone, A., Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Rossi, E.: Modelling the dynamics of an aedes albopictus population. In: Proceedings of the AMCA-POP 2010, volume 227 of Electronic Proceedings in Theoretical Computer Science, pp. 37–58 (2010)CrossRefGoogle Scholar
  2. 2.
    Cerone, A.: Process mining as a modelling tool: beyond the domain of business process management. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 139–144. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-49224-6_12CrossRefGoogle Scholar
  3. 3.
    Cerone, A.: A cognitive framework based on rewriting logic for the analysis of interactive systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp. 287–303. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41591-8_20CrossRefGoogle Scholar
  4. 4.
    Cerone, A.: Refinement mining: using data to sift plausible models. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946, pp. 26–41. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50230-4_3CrossRefGoogle Scholar
  5. 5.
    Cerone, A.: Model mining – integrating data analytics, modelling and verification. J. Intell. Inf. Syst. (2017).  https://doi.org/10.1007/s10844-017-0474-3
  6. 6.
    Cerone, A.: Towards a cognitive architecture for the formal analysis of human behaviour and learning. In: Mazzara, M., et al. (eds.) STAF 2018 Workshops. LNCS, vol. 11176, pp. 1–17. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-04771-9_17
  7. 7.
    Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parameter synthesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12982-2_7CrossRefGoogle Scholar
  8. 8.
    Clavel, M., et al.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-44881-0_7CrossRefGoogle Scholar
  9. 9.
    Gries, D., Scheneider, F.B.: A Logical Approach to Discrete Math. Springer, Heidelberg (1993).  https://doi.org/10.1007/978-1-4757-3837-7CrossRefGoogle Scholar
  10. 10.
    Gulwani, S.: Automating string processing in spreadsheets using input-output examples. In: Proceedings of the POPL 2011 ACM SIGPLAN Notices, vol. 46, pp. 317–330. ACM (2011)Google Scholar
  11. 11.
    Koksal, A.S., Pu, Y., Srivastava, S., Bodik, R., Fisher, J., Piterman, N.: Automating string processing in spreadsheets using input-output examples. In: Proceedings of the POPL 2013 ACM SIGPLAN Notices, vol. 48, pp. 469–482. ACM (2013)Google Scholar
  12. 12.
    Martí-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor. Comput. Sci. 285(2), 121–154 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mukala, P.: Process Models for Learning Patterns in FLOSS Repositories. Ph.D. thesis, Department of Computer Science, University of Pisa (2015)Google Scholar
  14. 14.
    Paoletti, N., Yordanov, B., Hamadi, Y., Wintersteiger, C.M., Kugler, H.: Analyzing and synthesizing genomic logic functions. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 343–357. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08867-9_23CrossRefGoogle Scholar
  15. 15.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  16. 16.
    Shams, F., Cerone, A., De Nicola, R.: On integrating social and sensor networks for emergency management. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 145–160. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-49224-6_13CrossRefGoogle Scholar
  17. 17.
    Solar-Lezama, A., Rabbah, R.M., Bodik, R., Ebcioglu, K.: Programming by sketching for bit-streaming programs. In: Proceedings of the PLDI 2005 ACM SIGPLAN Notices, vol. 40, pp. 281–294. ACM (2005)Google Scholar
  18. 18.
    Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program synthesis. In: Proceedings of the POPL 2010 ACM SIGPLAN Notices, vol. 45, pp. 313–326. ACM (2010)Google Scholar
  19. 19.
    van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and verification of properties: an approach based on temporal logic. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005).  https://doi.org/10.1007/11575771_11CrossRefGoogle Scholar
  20. 20.
    van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes: A Petri Net-Oriented Approach. The MIT Press, Cambridge (2011)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceNazarbayev UniversityAstanaKazakhstan

Personalised recommendations