Personality Gaze Patterns Unveiled via Automatic Relevance Determination

  • Vittorio CuculoEmail author
  • Alessandro D’Amelio
  • Raffaella Lanzarotti
  • Giuseppe Boccignone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11176)


Understanding human gaze behaviour in social context, as along a face-to-face interaction, remains an open research issue which is strictly related to personality traits. In the effort to bridge the gap between available data and models, typical approaches focus on the analysis of spatial and temporal preferences of gaze deployment over specific regions of the observed face, while adopting classic statistical methods. In this note we propose a different analysis perspective based on novel data-mining techniques and a probabilistic classification method that relies on Gaussian Processes exploiting Automatic Relevance Determination (ARD) kernel. Preliminary results obtained on a publicly available dataset are provided.


Eye movement Gaze Social interaction Human behaviour Gaussian Process Classification Personality Big five 


  1. 1.
    Baron-Cohen, S., Campbell, R., Karmiloff-Smith, A., Grant, J., Walker, J.: Are children with autism blind to the mentalistic significance of the eyes? Br. J. Dev. Psychol. 13(4), 379–398 (1995)CrossRefGoogle Scholar
  2. 2.
    Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., Plumb, I.: The reading the mind in the eyes test revised version: a study with normal adults, and adults with asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry All. Discip. 42(2), 241–251 (2001)CrossRefGoogle Scholar
  3. 3.
    Baron-Cohen, S., Wheelwright, S., Jolliffe, T.: Is there a “language of the eyes"? Evidence from normal adults, and adults with autism or asperger syndrome. Vis. Cognit. 4(3), 311–331 (1997)CrossRefGoogle Scholar
  4. 4.
    Boccignone, G., Ferraro, M.: Ecological sampling of gaze shifts. IEEE Trans. Cybern. 44(2), 266–279 (2014)CrossRefGoogle Scholar
  5. 5.
    Boccignone, G., Ferraro, M., Crespi, S., Robino, C., de’Sperati, C.: Detecting expert’s eye using a multiple-kernel relevance vector machine. J. Eye Movement Res. 7(2), 1–15 (2014)Google Scholar
  6. 6.
    Bolmont, M., Cacioppo, J.T., Cacioppo, S.: Love is in the gaze: an eye-tracking study of love and sexual desire (2014)CrossRefGoogle Scholar
  7. 7.
    Borji, A., Itti, L.: Defending yarbus: eye movements reveal observers’ task. J. vis. 14(3), 29 (2014)CrossRefGoogle Scholar
  8. 8.
    Bradley, M.M., Miccoli, L., Escrig, M.A., Lang, P.J.: The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45(4), 602–607 (2008)CrossRefGoogle Scholar
  9. 9.
    Breazeal, C., Scassellati, B.: A context-dependent attention system for a social robot. rn 255, 3 (1999)Google Scholar
  10. 10.
    Breiman, L.: Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16(3), 199–231 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Brockmann, D., Geisel, T.: The ecology of gaze shifts. Neurocomputing 32(1), 643–650 (2000)CrossRefGoogle Scholar
  12. 12.
    Broz, F., Lehmann, H., Nehaniv, C.L., Dautenhahn, K.: Mutual gaze, personality, and familiarity: dual eye-tracking during conversation. In: Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, pp. 858–864 (2012)Google Scholar
  13. 13.
    Busswell, G.: How People Look at Pictures: A Study of the Psychology of Perception in Art. Univ. Chicago Press, Oxford (1935)Google Scholar
  14. 14.
    Calder, A.J., et al.: Separate coding of different gaze directions in the superior temporal sulcus and inferior parietal lobule. Curr. Biol. 17(1), 20–25 (2007)CrossRefGoogle Scholar
  15. 15.
    Chambers, J., Mallows, C., Stuck, B.: A method for simulating stable random variables. J. Am. Stat. Ass. 71(354), 340–344 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Clavelli, A., Karatzas, D., Lladós, J., Ferraro, M., Boccignone, G.: Modelling task-dependent eye guidance to objects in pictures. Cognit. Comput. 6(3), 558–584 (2014)CrossRefGoogle Scholar
  18. 18.
    Costa, T., Boccignone, G., Cauda, F., Ferraro, M.: The foraging brain: evidence of levy dynamics in brain networks. PloS One 11(9), e0161702 (2016)CrossRefGoogle Scholar
  19. 19.
    Coutrot, A., Binetti, N., Harrison, C., Mareschal, I., Johnston, A.: Face exploration dynamics differentiate men and women. J. Vis. 16(14), 16 (2016)CrossRefGoogle Scholar
  20. 20.
    Duncan, S.: Some signals and rules for taking speaking turns in conversations. J. Pers. Soc. Psychol. 23(2), 283 (1972)CrossRefGoogle Scholar
  21. 21.
    Gigerenzer, G.: Mindless statistics. J. Socio-Econ. 33(5), 587–606 (2004). Statistical SignificanceCrossRefGoogle Scholar
  22. 22.
    Gnedenko, B., Kolmogórov, A.: Limit Distributions for Sums of Independent Random Variables. Addison-Wesley publishing Company, Boston (1954)zbMATHGoogle Scholar
  23. 23.
    Goldberg, L.R.: The structure of phenotypic personality traits. Am. psychol. 48(1), 26 (1993)CrossRefGoogle Scholar
  24. 24.
    He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008, (IEEE World Congress on Computational Intelligence), pp. 1322–1328. IEEE (2008)Google Scholar
  25. 25.
    Hoffman, E.A., Haxby, J.V.: Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat. Neurosci. 3(1), 80 (2000)CrossRefGoogle Scholar
  26. 26.
    Hofman, J.M., Sharma, A., Watts, D.J.: Prediction and explanation in social systems. Science 355(6324), 486–488 (2017)CrossRefGoogle Scholar
  27. 27.
    Hung, W.L., Chang-Chien, S.J., Yang, M.S.: Self-updating clustering algorithm for estimating the parameters in mixtures of von mises distributions. J. Appl. Stat. 39(10), 2259–2274 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Isaacowitz, D.M.: The gaze of the optimist. Pers. Soc. Psychol. Bull. 31(3), 407–415 (2005)CrossRefGoogle Scholar
  29. 29.
    Isaacowitz, D.M.: Motivated gaze: the view from the gazer. Psychol. Sci. 15(2), 68–72 (2006)Google Scholar
  30. 30.
    Kingstone, A., Laidlaw, K., Nasiopoulos, E., Risko, E.: Cognitive ethology and social attention. In: Tibayrenc, M., Ayala, F.J. (eds.) On Human Nature, pp. 365–382. Academic Press, San Diego (2017)CrossRefGoogle Scholar
  31. 31.
    Le Meur, O., Coutrot, A.: Introducing context-dependent and spatially-variant viewing biases in saccadic models. Vis. Res. 121, 72–84 (2016)CrossRefGoogle Scholar
  32. 32.
    Le Meur, O., Liu, Z.: Saccadic model of eye movements for free-viewing condition. Vis. Res. 116, 152–164 (2015)CrossRefGoogle Scholar
  33. 33.
    Mason, M.F., Tatkow, E.P., Macrae, C.N.: The look of love: gaze shifts and person perception. Psychol. Sci. 16(3), 236–239 (2005)CrossRefGoogle Scholar
  34. 34.
    Mazur, A., Rosa, E., Faupel, M., Heller, J., Leen, R., Thurman, B.: Physiological aspects of communication via mutual gaze. Am. J. Sociol. 86(1), 50–74 (1980)CrossRefGoogle Scholar
  35. 35.
    McConkie, G.W., Loschky, L.C.: Perception onset time during fixations in free viewing. Behav. Res. Methods Instrum. Comput. 34(4), 481–490 (2002)CrossRefGoogle Scholar
  36. 36.
    Mercer Moss, F.J., Baddeley, R., Canagarajah, N.: Eye movements to natural images as a function of sex and personality. PLoS One 7(11), 1–9 (2012)CrossRefGoogle Scholar
  37. 37.
    Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  38. 38.
    Ormel, J., Riese, H., Rosmalen, J.G.: Interpreting neuroticism scores across the adult life course: immutable or experience-dependent set points of negative affect? Clin. Psychol. Rev. 32(1), 71–79 (2012)CrossRefGoogle Scholar
  39. 39.
    Pekkanen, J., Lappi, O.: A new and general approach to signal denoising and eye movement classification based on segmented linear regression. Sci. Rep. 7(1), 1–13 (2017)CrossRefGoogle Scholar
  40. 40.
    Pelphrey, K.A., Singerman, J.D., Allison, T., McCarthy, G.: Brain activation evoked by perception of gaze shifts: the influence of context. Neuropsychologia 41(2), 156–170 (2003)CrossRefGoogle Scholar
  41. 41.
    Perlman, S.B., Morris, J.P., Vander Wyk, B.C., Green, S.R., Doyle, J.L., Pelphrey, K.A.: Individual differences in personality predict how people look at faces. PLoS One 4(6), 2–7 (2009)CrossRefGoogle Scholar
  42. 42.
    Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item short version of the big five inventory in english and german. J. Res. Pers. 41(1), 203–212 (2007)CrossRefGoogle Scholar
  43. 43.
    Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  44. 44.
    Rauthmann, J.F., Seubert, C.T., Sachse, P., Furtner, M.R.: Eyes as windows to the soul: gazing behavior is related to personality. J. Res. Pers. 46(2), 147–156 (2012)CrossRefGoogle Scholar
  45. 45.
    Tatler, B.W., Vincent, B.T.: Systematic tendencies in scene viewing. J. Eye Movement Res. 2(2), 1–18 (2008)Google Scholar
  46. 46.
    Tatler, B.W., Vincent, B.T.: The prominence of behavioural biases in eye guidance. Vis. Cognit. 17(6–7), 1029–1054 (2009)CrossRefGoogle Scholar
  47. 47.
    Tatler, B., Hayhoe, M., Land, M., Ballard, D.: Eye guidance in natural vision: reinterpreting salience. J. Vis. 11(5), 5 (2011)CrossRefGoogle Scholar
  48. 48.
    Yarbus, A.L.: Eye movements during perception of complex objects. In: Yarbus, A.L. (ed.) Eye movements and vision, pp. 171–211. Springer, Boston (1967). Scholar
  49. 49.
    Yoshikawa, Y., Shinozawa, K., Ishiguro, H., Hagita, N., Miyamoto, T.: The effects of responsive eye movement and blinking behavior in a communication robot, pp. 4564–4569. IEEE (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.PHuSe Lab, Department of Computer ScienceUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations