Advertisement

SlicerSALT: Shape AnaLysis Toolbox

  • Jared VicoryEmail author
  • Laura Pascal
  • Pablo Hernandez
  • James Fishbaugh
  • Juan Prieto
  • Mahmoud Mostapha
  • Chao Huang
  • Hina Shah
  • Junpyo Hong
  • Zhiyuan Liu
  • Loic Michoud
  • Jean-Christophe Fillion-Robin
  • Guido Gerig
  • Hongtu Zhu
  • Stephen M. Pizer
  • Martin Styner
  • Beatriz Paniagua
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11167)

Abstract

SlicerSALT is an open-source platform for disseminating state-of-the-art methods for performing statistical shape analysis. These methods are developed as 3D Slicer extensions to take advantage of its powerful underlying libraries. SlicerSALT itself is a heavily customized 3D Slicer package that is designed to be easy to use for shape analysis researchers. The packaged methods include powerful techniques for creating and visualizing shape representations as well as performing various types of analysis.

Keywords

Shape analysis Statistics Software 

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)CrossRefGoogle Scholar
  6. 6.
    Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  7. 7.
    Fishbaugh, J., Durrleman, S., Gerig, G.: Estimation of smooth growth trajectories with controlled acceleration from time series shape data. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 401–408. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23629-7_49CrossRefGoogle Scholar
  8. 8.
    Fishbaugh, J., et al.: Estimating shape correspondence for populations of objects with complex topology. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1010–1013. IEEE (2018)Google Scholar
  9. 9.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Zhu, H., Shen, D., Lin, W., Gilmore, J.H., Ibrahim, J.G.: Multiscale adaptive regression models for neuroimaging data. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 73(4), 559–578 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lyu, I., et al.: Robust estimation of group-wise cortical correspondence with an application to macaque and human neuroimaging studies. Front. Neurosci. 9, 210 (2015)CrossRefGoogle Scholar
  12. 12.
    Pizer, S.M., et al.: Nested sphere statistics of skeletal models. In: Breuß, M., Bruckstein, A., Maragos, P. (eds.) Innovations for Shape Analysis. MATHVISUAL, pp. 93–115. Springer, Berlin (2013)CrossRefGoogle Scholar
  13. 13.
    Styner, M., et al.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. (1071), 242 (2006)Google Scholar
  14. 14.
    Wang, J., et al.: Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline. Front. Neuroinf. 8, 7 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jared Vicory
    • 1
    Email author
  • Laura Pascal
    • 1
  • Pablo Hernandez
    • 1
  • James Fishbaugh
    • 3
  • Juan Prieto
    • 2
  • Mahmoud Mostapha
    • 2
  • Chao Huang
    • 2
  • Hina Shah
    • 1
  • Junpyo Hong
    • 2
  • Zhiyuan Liu
    • 2
  • Loic Michoud
    • 4
  • Jean-Christophe Fillion-Robin
    • 1
  • Guido Gerig
    • 3
  • Hongtu Zhu
    • 2
  • Stephen M. Pizer
    • 2
  • Martin Styner
    • 2
  • Beatriz Paniagua
    • 1
  1. 1.Kitware, Inc.Clifton ParkUSA
  2. 2.University of North Carolina at Chapel HillChapel HillUSA
  3. 3.New York UniversityNew York CityUSA
  4. 4.Univeristy of MichiganAnn ArborUSA

Personalised recommendations